mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	### What problem does this PR solve? Validate returned chunk at list_chunks and add_chunk ### Type of change - [x] Refactoring
		
			
				
	
	
		
			1395 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1395 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
import pathlib
 | 
						|
import datetime
 | 
						|
 | 
						|
from api.db.services.dialog_service import keyword_extraction
 | 
						|
from rag.app.qa import rmPrefix, beAdoc
 | 
						|
from rag.nlp import rag_tokenizer
 | 
						|
from api.db import LLMType, ParserType
 | 
						|
from api.db.services.llm_service import TenantLLMService
 | 
						|
from api import settings
 | 
						|
import xxhash
 | 
						|
import re
 | 
						|
from api.utils.api_utils import token_required
 | 
						|
from api.db.db_models import Task
 | 
						|
from api.db.services.task_service import TaskService, queue_tasks
 | 
						|
from api.utils.api_utils import server_error_response
 | 
						|
from api.utils.api_utils import get_result, get_error_data_result
 | 
						|
from io import BytesIO
 | 
						|
from flask import request, send_file
 | 
						|
from api.db import FileSource, TaskStatus, FileType
 | 
						|
from api.db.db_models import File
 | 
						|
from api.db.services.document_service import DocumentService
 | 
						|
from api.db.services.file2document_service import File2DocumentService
 | 
						|
from api.db.services.file_service import FileService
 | 
						|
from api.db.services.knowledgebase_service import KnowledgebaseService
 | 
						|
from api.utils.api_utils import construct_json_result, get_parser_config
 | 
						|
from rag.nlp import search
 | 
						|
from rag.utils import rmSpace
 | 
						|
from rag.utils.storage_factory import STORAGE_IMPL
 | 
						|
 | 
						|
from pydantic import BaseModel, Field, validator
 | 
						|
 | 
						|
MAXIMUM_OF_UPLOADING_FILES = 256
 | 
						|
 | 
						|
 | 
						|
class Chunk(BaseModel):
 | 
						|
    id: str = ""
 | 
						|
    content: str = ""
 | 
						|
    document_id: str = ""
 | 
						|
    docnm_kwd: str = ""
 | 
						|
    important_keywords: list = Field(default_factory=list)
 | 
						|
    questions: list = Field(default_factory=list)
 | 
						|
    question_tks: str = ""
 | 
						|
    image_id: str = ""
 | 
						|
    available: bool = True
 | 
						|
    positions: list[list[int]] = Field(default_factory=list)
 | 
						|
 | 
						|
    @validator('positions')
 | 
						|
    def validate_positions(cls, value):
 | 
						|
        for sublist in value:
 | 
						|
            if len(sublist) != 5:
 | 
						|
                raise ValueError("Each sublist in positions must have a length of 5")
 | 
						|
        return value
 | 
						|
 | 
						|
@manager.route("/datasets/<dataset_id>/documents", methods=["POST"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def upload(dataset_id, tenant_id):
 | 
						|
    """
 | 
						|
    Upload documents to a dataset.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Documents
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
      - in: formData
 | 
						|
        name: file
 | 
						|
        type: file
 | 
						|
        required: true
 | 
						|
        description: Document files to upload.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Successfully uploaded documents.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            data:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: object
 | 
						|
                properties:
 | 
						|
                  id:
 | 
						|
                    type: string
 | 
						|
                    description: Document ID.
 | 
						|
                  name:
 | 
						|
                    type: string
 | 
						|
                    description: Document name.
 | 
						|
                  chunk_count:
 | 
						|
                    type: integer
 | 
						|
                    description: Number of chunks.
 | 
						|
                  token_count:
 | 
						|
                    type: integer
 | 
						|
                    description: Number of tokens.
 | 
						|
                  dataset_id:
 | 
						|
                    type: string
 | 
						|
                    description: ID of the dataset.
 | 
						|
                  chunk_method:
 | 
						|
                    type: string
 | 
						|
                    description: Chunking method used.
 | 
						|
                  run:
 | 
						|
                    type: string
 | 
						|
                    description: Processing status.
 | 
						|
    """
 | 
						|
    if "file" not in request.files:
 | 
						|
        return get_error_data_result(
 | 
						|
            message="No file part!", code=settings.RetCode.ARGUMENT_ERROR
 | 
						|
        )
 | 
						|
    file_objs = request.files.getlist("file")
 | 
						|
    for file_obj in file_objs:
 | 
						|
        if file_obj.filename == "":
 | 
						|
            return get_result(
 | 
						|
                message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR
 | 
						|
            )
 | 
						|
    '''
 | 
						|
    # total size
 | 
						|
    total_size = 0
 | 
						|
    for file_obj in file_objs:
 | 
						|
        file_obj.seek(0, os.SEEK_END)
 | 
						|
        total_size += file_obj.tell()
 | 
						|
        file_obj.seek(0)
 | 
						|
    MAX_TOTAL_FILE_SIZE = 10 * 1024 * 1024
 | 
						|
    if total_size > MAX_TOTAL_FILE_SIZE:
 | 
						|
        return get_result(
 | 
						|
            message=f"Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)",
 | 
						|
            code=settings.RetCode.ARGUMENT_ERROR,
 | 
						|
        )
 | 
						|
    '''
 | 
						|
    e, kb = KnowledgebaseService.get_by_id(dataset_id)
 | 
						|
    if not e:
 | 
						|
        raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
 | 
						|
    err, files = FileService.upload_document(kb, file_objs, tenant_id)
 | 
						|
    if err:
 | 
						|
        return get_result(message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
 | 
						|
    # rename key's name
 | 
						|
    renamed_doc_list = []
 | 
						|
    for file in files:
 | 
						|
        doc = file[0]
 | 
						|
        key_mapping = {
 | 
						|
            "chunk_num": "chunk_count",
 | 
						|
            "kb_id": "dataset_id",
 | 
						|
            "token_num": "token_count",
 | 
						|
            "parser_id": "chunk_method",
 | 
						|
        }
 | 
						|
        renamed_doc = {}
 | 
						|
        for key, value in doc.items():
 | 
						|
            new_key = key_mapping.get(key, key)
 | 
						|
            renamed_doc[new_key] = value
 | 
						|
        renamed_doc["run"] = "UNSTART"
 | 
						|
        renamed_doc_list.append(renamed_doc)
 | 
						|
    return get_result(data=renamed_doc_list)
 | 
						|
 | 
						|
 | 
						|
@manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["PUT"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def update_doc(tenant_id, dataset_id, document_id):
 | 
						|
    """
 | 
						|
    Update a document within a dataset.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Documents
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: path
 | 
						|
        name: document_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the document to update.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
      - in: body
 | 
						|
        name: body
 | 
						|
        description: Document update parameters.
 | 
						|
        required: true
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            name:
 | 
						|
              type: string
 | 
						|
              description: New name of the document.
 | 
						|
            parser_config:
 | 
						|
              type: object
 | 
						|
              description: Parser configuration.
 | 
						|
            chunk_method:
 | 
						|
              type: string
 | 
						|
              description: Chunking method.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Document updated successfully.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
    """
 | 
						|
    req = request.json
 | 
						|
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 | 
						|
        return get_error_data_result(message="You don't own the dataset.")
 | 
						|
    doc = DocumentService.query(kb_id=dataset_id, id=document_id)
 | 
						|
    if not doc:
 | 
						|
        return get_error_data_result(message="The dataset doesn't own the document.")
 | 
						|
    doc = doc[0]
 | 
						|
    if "chunk_count" in req:
 | 
						|
        if req["chunk_count"] != doc.chunk_num:
 | 
						|
            return get_error_data_result(message="Can't change `chunk_count`.")
 | 
						|
    if "token_count" in req:
 | 
						|
        if req["token_count"] != doc.token_num:
 | 
						|
            return get_error_data_result(message="Can't change `token_count`.")
 | 
						|
    if "progress" in req:
 | 
						|
        if req["progress"] != doc.progress:
 | 
						|
            return get_error_data_result(message="Can't change `progress`.")
 | 
						|
 | 
						|
    if "name" in req and req["name"] != doc.name:
 | 
						|
        if (
 | 
						|
                pathlib.Path(req["name"].lower()).suffix
 | 
						|
                != pathlib.Path(doc.name.lower()).suffix
 | 
						|
        ):
 | 
						|
            return get_result(
 | 
						|
                message="The extension of file can't be changed",
 | 
						|
                code=settings.RetCode.ARGUMENT_ERROR,
 | 
						|
            )
 | 
						|
        for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
 | 
						|
            if d.name == req["name"]:
 | 
						|
                return get_error_data_result(
 | 
						|
                    message="Duplicated document name in the same dataset."
 | 
						|
                )
 | 
						|
        if not DocumentService.update_by_id(document_id, {"name": req["name"]}):
 | 
						|
            return get_error_data_result(message="Database error (Document rename)!")
 | 
						|
 | 
						|
        informs = File2DocumentService.get_by_document_id(document_id)
 | 
						|
        if informs:
 | 
						|
            e, file = FileService.get_by_id(informs[0].file_id)
 | 
						|
            FileService.update_by_id(file.id, {"name": req["name"]})
 | 
						|
    if "parser_config" in req:
 | 
						|
        DocumentService.update_parser_config(doc.id, req["parser_config"])
 | 
						|
    if "chunk_method" in req:
 | 
						|
        valid_chunk_method = {
 | 
						|
            "naive",
 | 
						|
            "manual",
 | 
						|
            "qa",
 | 
						|
            "table",
 | 
						|
            "paper",
 | 
						|
            "book",
 | 
						|
            "laws",
 | 
						|
            "presentation",
 | 
						|
            "picture",
 | 
						|
            "one",
 | 
						|
            "knowledge_graph",
 | 
						|
            "email",
 | 
						|
        }
 | 
						|
        if req.get("chunk_method") not in valid_chunk_method:
 | 
						|
            return get_error_data_result(
 | 
						|
                f"`chunk_method` {req['chunk_method']} doesn't exist"
 | 
						|
            )
 | 
						|
        if doc.parser_id.lower() == req["chunk_method"].lower():
 | 
						|
            return get_result()
 | 
						|
 | 
						|
        if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
 | 
						|
            return get_error_data_result(message="Not supported yet!")
 | 
						|
 | 
						|
        e = DocumentService.update_by_id(
 | 
						|
            doc.id,
 | 
						|
            {
 | 
						|
                "parser_id": req["chunk_method"],
 | 
						|
                "progress": 0,
 | 
						|
                "progress_msg": "",
 | 
						|
                "run": TaskStatus.UNSTART.value,
 | 
						|
            },
 | 
						|
        )
 | 
						|
        if not e:
 | 
						|
            return get_error_data_result(message="Document not found!")
 | 
						|
        req["parser_config"] = get_parser_config(
 | 
						|
            req["chunk_method"], req.get("parser_config")
 | 
						|
        )
 | 
						|
        DocumentService.update_parser_config(doc.id, req["parser_config"])
 | 
						|
        if doc.token_num > 0:
 | 
						|
            e = DocumentService.increment_chunk_num(
 | 
						|
                doc.id,
 | 
						|
                doc.kb_id,
 | 
						|
                doc.token_num * -1,
 | 
						|
                doc.chunk_num * -1,
 | 
						|
                doc.process_duation * -1,
 | 
						|
            )
 | 
						|
            if not e:
 | 
						|
                return get_error_data_result(message="Document not found!")
 | 
						|
            settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
 | 
						|
 | 
						|
    return get_result()
 | 
						|
 | 
						|
 | 
						|
@manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["GET"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def download(tenant_id, dataset_id, document_id):
 | 
						|
    """
 | 
						|
    Download a document from a dataset.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Documents
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    produces:
 | 
						|
      - application/octet-stream
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: path
 | 
						|
        name: document_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the document to download.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Document file stream.
 | 
						|
        schema:
 | 
						|
          type: file
 | 
						|
      400:
 | 
						|
        description: Error message.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
    """
 | 
						|
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You do not own the dataset {dataset_id}.")
 | 
						|
    doc = DocumentService.query(kb_id=dataset_id, id=document_id)
 | 
						|
    if not doc:
 | 
						|
        return get_error_data_result(
 | 
						|
            message=f"The dataset not own the document {document_id}."
 | 
						|
        )
 | 
						|
    # The process of downloading
 | 
						|
    doc_id, doc_location = File2DocumentService.get_storage_address(
 | 
						|
        doc_id=document_id
 | 
						|
    )  # minio address
 | 
						|
    file_stream = STORAGE_IMPL.get(doc_id, doc_location)
 | 
						|
    if not file_stream:
 | 
						|
        return construct_json_result(
 | 
						|
            message="This file is empty.", code=settings.RetCode.DATA_ERROR
 | 
						|
        )
 | 
						|
    file = BytesIO(file_stream)
 | 
						|
    # Use send_file with a proper filename and MIME type
 | 
						|
    return send_file(
 | 
						|
        file,
 | 
						|
        as_attachment=True,
 | 
						|
        download_name=doc[0].name,
 | 
						|
        mimetype="application/octet-stream",  # Set a default MIME type
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@manager.route("/datasets/<dataset_id>/documents", methods=["GET"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def list_docs(dataset_id, tenant_id):
 | 
						|
    """
 | 
						|
    List documents in a dataset.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Documents
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: query
 | 
						|
        name: id
 | 
						|
        type: string
 | 
						|
        required: false
 | 
						|
        description: Filter by document ID.
 | 
						|
      - in: query
 | 
						|
        name: page
 | 
						|
        type: integer
 | 
						|
        required: false
 | 
						|
        default: 1
 | 
						|
        description: Page number.
 | 
						|
      - in: query
 | 
						|
        name: page_size
 | 
						|
        type: integer
 | 
						|
        required: false
 | 
						|
        default: 30
 | 
						|
        description: Number of items per page.
 | 
						|
      - in: query
 | 
						|
        name: orderby
 | 
						|
        type: string
 | 
						|
        required: false
 | 
						|
        default: "create_time"
 | 
						|
        description: Field to order by.
 | 
						|
      - in: query
 | 
						|
        name: desc
 | 
						|
        type: boolean
 | 
						|
        required: false
 | 
						|
        default: true
 | 
						|
        description: Order in descending.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: List of documents.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            total:
 | 
						|
              type: integer
 | 
						|
              description: Total number of documents.
 | 
						|
            docs:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: object
 | 
						|
                properties:
 | 
						|
                  id:
 | 
						|
                    type: string
 | 
						|
                    description: Document ID.
 | 
						|
                  name:
 | 
						|
                    type: string
 | 
						|
                    description: Document name.
 | 
						|
                  chunk_count:
 | 
						|
                    type: integer
 | 
						|
                    description: Number of chunks.
 | 
						|
                  token_count:
 | 
						|
                    type: integer
 | 
						|
                    description: Number of tokens.
 | 
						|
                  dataset_id:
 | 
						|
                    type: string
 | 
						|
                    description: ID of the dataset.
 | 
						|
                  chunk_method:
 | 
						|
                    type: string
 | 
						|
                    description: Chunking method used.
 | 
						|
                  run:
 | 
						|
                    type: string
 | 
						|
                    description: Processing status.
 | 
						|
    """
 | 
						|
    if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
 | 
						|
    id = request.args.get("id")
 | 
						|
    name = request.args.get("name")
 | 
						|
    if not DocumentService.query(id=id, kb_id=dataset_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the document {id}.")
 | 
						|
    if not DocumentService.query(name=name, kb_id=dataset_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the document {name}.")
 | 
						|
    page = int(request.args.get("page", 1))
 | 
						|
    keywords = request.args.get("keywords", "")
 | 
						|
    page_size = int(request.args.get("page_size", 30))
 | 
						|
    orderby = request.args.get("orderby", "create_time")
 | 
						|
    if request.args.get("desc") == "False":
 | 
						|
        desc = False
 | 
						|
    else:
 | 
						|
        desc = True
 | 
						|
    docs, tol = DocumentService.get_list(
 | 
						|
        dataset_id, page, page_size, orderby, desc, keywords, id, name
 | 
						|
    )
 | 
						|
 | 
						|
    # rename key's name
 | 
						|
    renamed_doc_list = []
 | 
						|
    for doc in docs:
 | 
						|
        key_mapping = {
 | 
						|
            "chunk_num": "chunk_count",
 | 
						|
            "kb_id": "dataset_id",
 | 
						|
            "token_num": "token_count",
 | 
						|
            "parser_id": "chunk_method",
 | 
						|
        }
 | 
						|
        run_mapping = {
 | 
						|
            "0": "UNSTART",
 | 
						|
            "1": "RUNNING",
 | 
						|
            "2": "CANCEL",
 | 
						|
            "3": "DONE",
 | 
						|
            "4": "FAIL",
 | 
						|
        }
 | 
						|
        renamed_doc = {}
 | 
						|
        for key, value in doc.items():
 | 
						|
            if key == "run":
 | 
						|
                renamed_doc["run"] = run_mapping.get(str(value))
 | 
						|
            new_key = key_mapping.get(key, key)
 | 
						|
            renamed_doc[new_key] = value
 | 
						|
            if key == "run":
 | 
						|
                renamed_doc["run"] = run_mapping.get(value)
 | 
						|
        renamed_doc_list.append(renamed_doc)
 | 
						|
    return get_result(data={"total": tol, "docs": renamed_doc_list})
 | 
						|
 | 
						|
 | 
						|
@manager.route("/datasets/<dataset_id>/documents", methods=["DELETE"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def delete(tenant_id, dataset_id):
 | 
						|
    """
 | 
						|
    Delete documents from a dataset.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Documents
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: body
 | 
						|
        name: body
 | 
						|
        description: Document deletion parameters.
 | 
						|
        required: true
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            ids:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: string
 | 
						|
              description: List of document IDs to delete.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Documents deleted successfully.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
    """
 | 
						|
    if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
 | 
						|
    req = request.json
 | 
						|
    if not req:
 | 
						|
        doc_ids = None
 | 
						|
    else:
 | 
						|
        doc_ids = req.get("ids")
 | 
						|
    if not doc_ids:
 | 
						|
        doc_list = []
 | 
						|
        docs = DocumentService.query(kb_id=dataset_id)
 | 
						|
        for doc in docs:
 | 
						|
            doc_list.append(doc.id)
 | 
						|
    else:
 | 
						|
        doc_list = doc_ids
 | 
						|
    root_folder = FileService.get_root_folder(tenant_id)
 | 
						|
    pf_id = root_folder["id"]
 | 
						|
    FileService.init_knowledgebase_docs(pf_id, tenant_id)
 | 
						|
    errors = ""
 | 
						|
    for doc_id in doc_list:
 | 
						|
        try:
 | 
						|
            e, doc = DocumentService.get_by_id(doc_id)
 | 
						|
            if not e:
 | 
						|
                return get_error_data_result(message="Document not found!")
 | 
						|
            tenant_id = DocumentService.get_tenant_id(doc_id)
 | 
						|
            if not tenant_id:
 | 
						|
                return get_error_data_result(message="Tenant not found!")
 | 
						|
 | 
						|
            b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
 | 
						|
 | 
						|
            if not DocumentService.remove_document(doc, tenant_id):
 | 
						|
                return get_error_data_result(
 | 
						|
                    message="Database error (Document removal)!"
 | 
						|
                )
 | 
						|
 | 
						|
            f2d = File2DocumentService.get_by_document_id(doc_id)
 | 
						|
            FileService.filter_delete(
 | 
						|
                [
 | 
						|
                    File.source_type == FileSource.KNOWLEDGEBASE,
 | 
						|
                    File.id == f2d[0].file_id,
 | 
						|
                ]
 | 
						|
            )
 | 
						|
            File2DocumentService.delete_by_document_id(doc_id)
 | 
						|
 | 
						|
            STORAGE_IMPL.rm(b, n)
 | 
						|
        except Exception as e:
 | 
						|
            errors += str(e)
 | 
						|
 | 
						|
    if errors:
 | 
						|
        return get_result(message=errors, code=settings.RetCode.SERVER_ERROR)
 | 
						|
 | 
						|
    return get_result()
 | 
						|
 | 
						|
 | 
						|
@manager.route("/datasets/<dataset_id>/chunks", methods=["POST"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def parse(tenant_id, dataset_id):
 | 
						|
    """
 | 
						|
    Start parsing documents into chunks.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Chunks
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: body
 | 
						|
        name: body
 | 
						|
        description: Parsing parameters.
 | 
						|
        required: true
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            document_ids:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: string
 | 
						|
              description: List of document IDs to parse.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Parsing started successfully.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
    """
 | 
						|
    if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | 
						|
    req = request.json
 | 
						|
    if not req.get("document_ids"):
 | 
						|
        return get_error_data_result("`document_ids` is required")
 | 
						|
    for id in req["document_ids"]:
 | 
						|
        doc = DocumentService.query(id=id, kb_id=dataset_id)
 | 
						|
        if not doc:
 | 
						|
            return get_error_data_result(message=f"You don't own the document {id}.")
 | 
						|
        if doc[0].progress != 0.0:
 | 
						|
            return get_error_data_result(
 | 
						|
                "Can't stop parsing document with progress at 0 or 100"
 | 
						|
            )
 | 
						|
        info = {"run": "1", "progress": 0}
 | 
						|
        info["progress_msg"] = ""
 | 
						|
        info["chunk_num"] = 0
 | 
						|
        info["token_num"] = 0
 | 
						|
        DocumentService.update_by_id(id, info)
 | 
						|
        settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
 | 
						|
        TaskService.filter_delete([Task.doc_id == id])
 | 
						|
        e, doc = DocumentService.get_by_id(id)
 | 
						|
        doc = doc.to_dict()
 | 
						|
        doc["tenant_id"] = tenant_id
 | 
						|
        bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
 | 
						|
        queue_tasks(doc, bucket, name)
 | 
						|
    return get_result()
 | 
						|
 | 
						|
 | 
						|
@manager.route("/datasets/<dataset_id>/chunks", methods=["DELETE"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def stop_parsing(tenant_id, dataset_id):
 | 
						|
    """
 | 
						|
    Stop parsing documents into chunks.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Chunks
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: body
 | 
						|
        name: body
 | 
						|
        description: Stop parsing parameters.
 | 
						|
        required: true
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            document_ids:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: string
 | 
						|
              description: List of document IDs to stop parsing.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Parsing stopped successfully.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
    """
 | 
						|
    if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | 
						|
    req = request.json
 | 
						|
    if not req.get("document_ids"):
 | 
						|
        return get_error_data_result("`document_ids` is required")
 | 
						|
    for id in req["document_ids"]:
 | 
						|
        doc = DocumentService.query(id=id, kb_id=dataset_id)
 | 
						|
        if not doc:
 | 
						|
            return get_error_data_result(message=f"You don't own the document {id}.")
 | 
						|
        if int(doc[0].progress) == 1 or int(doc[0].progress) == 0:
 | 
						|
            return get_error_data_result(
 | 
						|
                "Can't stop parsing document with progress at 0 or 1"
 | 
						|
            )
 | 
						|
        info = {"run": "2", "progress": 0, "chunk_num": 0}
 | 
						|
        DocumentService.update_by_id(id, info)
 | 
						|
        settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
 | 
						|
    return get_result()
 | 
						|
 | 
						|
 | 
						|
@manager.route("/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["GET"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def list_chunks(tenant_id, dataset_id, document_id):
 | 
						|
    """
 | 
						|
    List chunks of a document.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Chunks
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: path
 | 
						|
        name: document_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the document.
 | 
						|
      - in: query
 | 
						|
        name: page
 | 
						|
        type: integer
 | 
						|
        required: false
 | 
						|
        default: 1
 | 
						|
        description: Page number.
 | 
						|
      - in: query
 | 
						|
        name: page_size
 | 
						|
        type: integer
 | 
						|
        required: false
 | 
						|
        default: 30
 | 
						|
        description: Number of items per page.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: List of chunks.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            total:
 | 
						|
              type: integer
 | 
						|
              description: Total number of chunks.
 | 
						|
            chunks:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: object
 | 
						|
                properties:
 | 
						|
                  id:
 | 
						|
                    type: string
 | 
						|
                    description: Chunk ID.
 | 
						|
                  content:
 | 
						|
                    type: string
 | 
						|
                    description: Chunk content.
 | 
						|
                  document_id:
 | 
						|
                    type: string
 | 
						|
                    description: ID of the document.
 | 
						|
                  important_keywords:
 | 
						|
                    type: array
 | 
						|
                    items:
 | 
						|
                      type: string
 | 
						|
                    description: Important keywords.
 | 
						|
                  image_id:
 | 
						|
                    type: string
 | 
						|
                    description: Image ID associated with the chunk.
 | 
						|
            doc:
 | 
						|
              type: object
 | 
						|
              description: Document details.
 | 
						|
    """
 | 
						|
    if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | 
						|
    doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 | 
						|
    if not doc:
 | 
						|
        return get_error_data_result(
 | 
						|
            message=f"You don't own the document {document_id}."
 | 
						|
        )
 | 
						|
    doc = doc[0]
 | 
						|
    req = request.args
 | 
						|
    doc_id = document_id
 | 
						|
    page = int(req.get("page", 1))
 | 
						|
    size = int(req.get("page_size", 30))
 | 
						|
    question = req.get("keywords", "")
 | 
						|
    query = {
 | 
						|
        "doc_ids": [doc_id],
 | 
						|
        "page": page,
 | 
						|
        "size": size,
 | 
						|
        "question": question,
 | 
						|
        "sort": True,
 | 
						|
    }
 | 
						|
    key_mapping = {
 | 
						|
        "chunk_num": "chunk_count",
 | 
						|
        "kb_id": "dataset_id",
 | 
						|
        "token_num": "token_count",
 | 
						|
        "parser_id": "chunk_method",
 | 
						|
    }
 | 
						|
    run_mapping = {
 | 
						|
        "0": "UNSTART",
 | 
						|
        "1": "RUNNING",
 | 
						|
        "2": "CANCEL",
 | 
						|
        "3": "DONE",
 | 
						|
        "4": "FAIL",
 | 
						|
    }
 | 
						|
    doc = doc.to_dict()
 | 
						|
    renamed_doc = {}
 | 
						|
    for key, value in doc.items():
 | 
						|
        new_key = key_mapping.get(key, key)
 | 
						|
        renamed_doc[new_key] = value
 | 
						|
        if key == "run":
 | 
						|
            renamed_doc["run"] = run_mapping.get(str(value))
 | 
						|
 | 
						|
    res = {"total": 0, "chunks": [], "doc": renamed_doc}
 | 
						|
    origin_chunks = []
 | 
						|
    if settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
 | 
						|
        sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None,
 | 
						|
                                           highlight=True)
 | 
						|
        res["total"] = sres.total
 | 
						|
        sign = 0
 | 
						|
        for id in sres.ids:
 | 
						|
            d = {
 | 
						|
                "id": id,
 | 
						|
                "content_with_weight": (
 | 
						|
                    rmSpace(sres.highlight[id])
 | 
						|
                    if question and id in sres.highlight
 | 
						|
                    else sres.field[id].get("content_with_weight", "")
 | 
						|
                ),
 | 
						|
                "doc_id": sres.field[id]["doc_id"],
 | 
						|
                "docnm_kwd": sres.field[id]["docnm_kwd"],
 | 
						|
                "important_kwd": sres.field[id].get("important_kwd", []),
 | 
						|
                "question_kwd": sres.field[id].get("question_kwd", []),
 | 
						|
                "img_id": sres.field[id].get("img_id", ""),
 | 
						|
                "available_int": sres.field[id].get("available_int", 1),
 | 
						|
                "positions": sres.field[id].get("position_int", []),
 | 
						|
            }
 | 
						|
            origin_chunks.append(d)
 | 
						|
            if req.get("id"):
 | 
						|
                if req.get("id") == id:
 | 
						|
                    origin_chunks.clear()
 | 
						|
                    origin_chunks.append(d)
 | 
						|
                    sign = 1
 | 
						|
                    break
 | 
						|
        if req.get("id"):
 | 
						|
            if sign == 0:
 | 
						|
                return get_error_data_result(f"Can't find this chunk {req.get('id')}")
 | 
						|
 | 
						|
    for chunk in origin_chunks:
 | 
						|
        key_mapping = {
 | 
						|
            "id": "id",
 | 
						|
            "content_with_weight": "content",
 | 
						|
            "doc_id": "document_id",
 | 
						|
            "important_kwd": "important_keywords",
 | 
						|
            "question_kwd": "questions",
 | 
						|
            "img_id": "image_id",
 | 
						|
            "available_int": "available",
 | 
						|
        }
 | 
						|
        renamed_chunk = {}
 | 
						|
        for key, value in chunk.items():
 | 
						|
            new_key = key_mapping.get(key, key)
 | 
						|
            renamed_chunk[new_key] = value
 | 
						|
        if renamed_chunk["available"] == 0:
 | 
						|
            renamed_chunk["available"] = False
 | 
						|
        if renamed_chunk["available"] == 1:
 | 
						|
            renamed_chunk["available"] = True
 | 
						|
        res["chunks"].append(renamed_chunk)
 | 
						|
        _ = Chunk(**renamed_chunk) # validate the chunk
 | 
						|
    return get_result(data=res)
 | 
						|
 | 
						|
 | 
						|
@manager.route(  # noqa: F821
 | 
						|
    "/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["POST"]
 | 
						|
)
 | 
						|
@token_required
 | 
						|
def add_chunk(tenant_id, dataset_id, document_id):
 | 
						|
    """
 | 
						|
    Add a chunk to a document.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Chunks
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: path
 | 
						|
        name: document_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the document.
 | 
						|
      - in: body
 | 
						|
        name: body
 | 
						|
        description: Chunk data.
 | 
						|
        required: true
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            content:
 | 
						|
              type: string
 | 
						|
              required: true
 | 
						|
              description: Content of the chunk.
 | 
						|
            important_keywords:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: string
 | 
						|
              description: Important keywords.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Chunk added successfully.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            chunk:
 | 
						|
              type: object
 | 
						|
              properties:
 | 
						|
                id:
 | 
						|
                  type: string
 | 
						|
                  description: Chunk ID.
 | 
						|
                content:
 | 
						|
                  type: string
 | 
						|
                  description: Chunk content.
 | 
						|
                document_id:
 | 
						|
                  type: string
 | 
						|
                  description: ID of the document.
 | 
						|
                important_keywords:
 | 
						|
                  type: array
 | 
						|
                  items:
 | 
						|
                    type: string
 | 
						|
                  description: Important keywords.
 | 
						|
    """
 | 
						|
    if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | 
						|
    doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 | 
						|
    if not doc:
 | 
						|
        return get_error_data_result(
 | 
						|
            message=f"You don't own the document {document_id}."
 | 
						|
        )
 | 
						|
    doc = doc[0]
 | 
						|
    req = request.json
 | 
						|
    if not req.get("content"):
 | 
						|
        return get_error_data_result(message="`content` is required")
 | 
						|
    if "important_keywords" in req:
 | 
						|
        if not isinstance(req["important_keywords"], list):
 | 
						|
            return get_error_data_result(
 | 
						|
                "`important_keywords` is required to be a list"
 | 
						|
            )
 | 
						|
    if "questions" in req:
 | 
						|
        if not isinstance(req["questions"], list):
 | 
						|
            return get_error_data_result(
 | 
						|
                "`questions` is required to be a list"
 | 
						|
            )
 | 
						|
    chunk_id = xxhash.xxh64((req["content"] + document_id).encode("utf-8")).hexdigest()
 | 
						|
    d = {
 | 
						|
        "id": chunk_id,
 | 
						|
        "content_ltks": rag_tokenizer.tokenize(req["content"]),
 | 
						|
        "content_with_weight": req["content"],
 | 
						|
    }
 | 
						|
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 | 
						|
    d["important_kwd"] = req.get("important_keywords", [])
 | 
						|
    d["important_tks"] = rag_tokenizer.tokenize(
 | 
						|
        " ".join(req.get("important_keywords", []))
 | 
						|
    )
 | 
						|
    d["question_kwd"] = req.get("questions", [])
 | 
						|
    d["question_tks"] = rag_tokenizer.tokenize(
 | 
						|
        "\n".join(req.get("questions", []))
 | 
						|
    )
 | 
						|
    d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
 | 
						|
    d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
 | 
						|
    d["kb_id"] = dataset_id
 | 
						|
    d["docnm_kwd"] = doc.name
 | 
						|
    d["doc_id"] = document_id
 | 
						|
    embd_id = DocumentService.get_embd_id(document_id)
 | 
						|
    embd_mdl = TenantLLMService.model_instance(
 | 
						|
        tenant_id, LLMType.EMBEDDING.value, embd_id
 | 
						|
    )
 | 
						|
    v, c = embd_mdl.encode([doc.name, req["content"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
 | 
						|
    v = 0.1 * v[0] + 0.9 * v[1]
 | 
						|
    d["q_%d_vec" % len(v)] = v.tolist()
 | 
						|
    settings.docStoreConn.insert([d], search.index_name(tenant_id), dataset_id)
 | 
						|
 | 
						|
    DocumentService.increment_chunk_num(doc.id, doc.kb_id, c, 1, 0)
 | 
						|
    # rename keys
 | 
						|
    key_mapping = {
 | 
						|
        "id": "id",
 | 
						|
        "content_with_weight": "content",
 | 
						|
        "doc_id": "document_id",
 | 
						|
        "important_kwd": "important_keywords",
 | 
						|
        "question_kwd": "questions",
 | 
						|
        "kb_id": "dataset_id",
 | 
						|
        "create_timestamp_flt": "create_timestamp",
 | 
						|
        "create_time": "create_time",
 | 
						|
        "document_keyword": "document",
 | 
						|
    }
 | 
						|
    renamed_chunk = {}
 | 
						|
    for key, value in d.items():
 | 
						|
        if key in key_mapping:
 | 
						|
            new_key = key_mapping.get(key, key)
 | 
						|
            renamed_chunk[new_key] = value
 | 
						|
    _ = Chunk(**renamed_chunk)  # validate the chunk
 | 
						|
    return get_result(data={"chunk": renamed_chunk})
 | 
						|
    # return get_result(data={"chunk_id": chunk_id})
 | 
						|
 | 
						|
 | 
						|
@manager.route(  # noqa: F821
 | 
						|
    "datasets/<dataset_id>/documents/<document_id>/chunks", methods=["DELETE"]
 | 
						|
)
 | 
						|
@token_required
 | 
						|
def rm_chunk(tenant_id, dataset_id, document_id):
 | 
						|
    """
 | 
						|
    Remove chunks from a document.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Chunks
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: path
 | 
						|
        name: document_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the document.
 | 
						|
      - in: body
 | 
						|
        name: body
 | 
						|
        description: Chunk removal parameters.
 | 
						|
        required: true
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            chunk_ids:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: string
 | 
						|
              description: List of chunk IDs to remove.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Chunks removed successfully.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
    """
 | 
						|
    if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | 
						|
    req = request.json
 | 
						|
    condition = {"doc_id": document_id}
 | 
						|
    if "chunk_ids" in req:
 | 
						|
        condition["id"] = req["chunk_ids"]
 | 
						|
    chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
 | 
						|
    if chunk_number != 0:
 | 
						|
        DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
 | 
						|
    if "chunk_ids" in req and chunk_number != len(req["chunk_ids"]):
 | 
						|
        return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(req['chunk_ids'])}")
 | 
						|
    return get_result(message=f"deleted {chunk_number} chunks")
 | 
						|
 | 
						|
 | 
						|
@manager.route(  # noqa: F821
 | 
						|
    "/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>", methods=["PUT"]
 | 
						|
)
 | 
						|
@token_required
 | 
						|
def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
 | 
						|
    """
 | 
						|
    Update a chunk within a document.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Chunks
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: path
 | 
						|
        name: dataset_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the dataset.
 | 
						|
      - in: path
 | 
						|
        name: document_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the document.
 | 
						|
      - in: path
 | 
						|
        name: chunk_id
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: ID of the chunk to update.
 | 
						|
      - in: body
 | 
						|
        name: body
 | 
						|
        description: Chunk update parameters.
 | 
						|
        required: true
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            content:
 | 
						|
              type: string
 | 
						|
              description: Updated content of the chunk.
 | 
						|
            important_keywords:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: string
 | 
						|
              description: Updated important keywords.
 | 
						|
            available:
 | 
						|
              type: boolean
 | 
						|
              description: Availability status of the chunk.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Chunk updated successfully.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
    """
 | 
						|
    chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), [dataset_id])
 | 
						|
    if chunk is None:
 | 
						|
        return get_error_data_result(f"Can't find this chunk {chunk_id}")
 | 
						|
    if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 | 
						|
        return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 | 
						|
    doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 | 
						|
    if not doc:
 | 
						|
        return get_error_data_result(
 | 
						|
            message=f"You don't own the document {document_id}."
 | 
						|
        )
 | 
						|
    doc = doc[0]
 | 
						|
    req = request.json
 | 
						|
    if "content" in req:
 | 
						|
        content = req["content"]
 | 
						|
    else:
 | 
						|
        content = chunk.get("content_with_weight", "")
 | 
						|
    d = {"id": chunk_id, "content_with_weight": content}
 | 
						|
    d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
 | 
						|
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 | 
						|
    if "important_keywords" in req:
 | 
						|
        if not isinstance(req["important_keywords"], list):
 | 
						|
            return get_error_data_result("`important_keywords` should be a list")
 | 
						|
        d["important_kwd"] = req.get("important_keywords", [])
 | 
						|
        d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
 | 
						|
    if "questions" in req:
 | 
						|
        if not isinstance(req["questions"], list):
 | 
						|
            return get_error_data_result("`questions` should be a list")
 | 
						|
        d["question_kwd"] = req.get("questions")
 | 
						|
        d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["questions"]))
 | 
						|
    if "available" in req:
 | 
						|
        d["available_int"] = int(req["available"])
 | 
						|
    embd_id = DocumentService.get_embd_id(document_id)
 | 
						|
    embd_mdl = TenantLLMService.model_instance(
 | 
						|
        tenant_id, LLMType.EMBEDDING.value, embd_id
 | 
						|
    )
 | 
						|
    if doc.parser_id == ParserType.QA:
 | 
						|
        arr = [t for t in re.split(r"[\n\t]", d["content_with_weight"]) if len(t) > 1]
 | 
						|
        if len(arr) != 2:
 | 
						|
            return get_error_data_result(
 | 
						|
                message="Q&A must be separated by TAB/ENTER key."
 | 
						|
            )
 | 
						|
        q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
 | 
						|
        d = beAdoc(
 | 
						|
            d, arr[0], arr[1], not any([rag_tokenizer.is_chinese(t) for t in q + a])
 | 
						|
        )
 | 
						|
 | 
						|
    v, c = embd_mdl.encode([doc.name, d["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
 | 
						|
    v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
 | 
						|
    d["q_%d_vec" % len(v)] = v.tolist()
 | 
						|
    settings.docStoreConn.update({"id": chunk_id}, d, search.index_name(tenant_id), dataset_id)
 | 
						|
    return get_result()
 | 
						|
 | 
						|
 | 
						|
@manager.route("/retrieval", methods=["POST"])  # noqa: F821
 | 
						|
@token_required
 | 
						|
def retrieval_test(tenant_id):
 | 
						|
    """
 | 
						|
    Retrieve chunks based on a query.
 | 
						|
    ---
 | 
						|
    tags:
 | 
						|
      - Retrieval
 | 
						|
    security:
 | 
						|
      - ApiKeyAuth: []
 | 
						|
    parameters:
 | 
						|
      - in: body
 | 
						|
        name: body
 | 
						|
        description: Retrieval parameters.
 | 
						|
        required: true
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            dataset_ids:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: string
 | 
						|
              required: true
 | 
						|
              description: List of dataset IDs to search in.
 | 
						|
            question:
 | 
						|
              type: string
 | 
						|
              required: true
 | 
						|
              description: Query string.
 | 
						|
            document_ids:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: string
 | 
						|
              description: List of document IDs to filter.
 | 
						|
            similarity_threshold:
 | 
						|
              type: number
 | 
						|
              format: float
 | 
						|
              description: Similarity threshold.
 | 
						|
            vector_similarity_weight:
 | 
						|
              type: number
 | 
						|
              format: float
 | 
						|
              description: Vector similarity weight.
 | 
						|
            top_k:
 | 
						|
              type: integer
 | 
						|
              description: Maximum number of chunks to return.
 | 
						|
            highlight:
 | 
						|
              type: boolean
 | 
						|
              description: Whether to highlight matched content.
 | 
						|
      - in: header
 | 
						|
        name: Authorization
 | 
						|
        type: string
 | 
						|
        required: true
 | 
						|
        description: Bearer token for authentication.
 | 
						|
    responses:
 | 
						|
      200:
 | 
						|
        description: Retrieval results.
 | 
						|
        schema:
 | 
						|
          type: object
 | 
						|
          properties:
 | 
						|
            chunks:
 | 
						|
              type: array
 | 
						|
              items:
 | 
						|
                type: object
 | 
						|
                properties:
 | 
						|
                  id:
 | 
						|
                    type: string
 | 
						|
                    description: Chunk ID.
 | 
						|
                  content:
 | 
						|
                    type: string
 | 
						|
                    description: Chunk content.
 | 
						|
                  document_id:
 | 
						|
                    type: string
 | 
						|
                    description: ID of the document.
 | 
						|
                  dataset_id:
 | 
						|
                    type: string
 | 
						|
                    description: ID of the dataset.
 | 
						|
                  similarity:
 | 
						|
                    type: number
 | 
						|
                    format: float
 | 
						|
                    description: Similarity score.
 | 
						|
    """
 | 
						|
    req = request.json
 | 
						|
    if not req.get("dataset_ids"):
 | 
						|
        return get_error_data_result("`dataset_ids` is required.")
 | 
						|
    kb_ids = req["dataset_ids"]
 | 
						|
    if not isinstance(kb_ids, list):
 | 
						|
        return get_error_data_result("`dataset_ids` should be a list")
 | 
						|
    kbs = KnowledgebaseService.get_by_ids(kb_ids)
 | 
						|
    for id in kb_ids:
 | 
						|
        if not KnowledgebaseService.accessible(kb_id=id, user_id=tenant_id):
 | 
						|
            return get_error_data_result(f"You don't own the dataset {id}.")
 | 
						|
    embd_nms = list(set([kb.embd_id for kb in kbs]))
 | 
						|
    if len(embd_nms) != 1:
 | 
						|
        return get_result(
 | 
						|
            message='Datasets use different embedding models."',
 | 
						|
            code=settings.RetCode.AUTHENTICATION_ERROR,
 | 
						|
        )
 | 
						|
    if "question" not in req:
 | 
						|
        return get_error_data_result("`question` is required.")
 | 
						|
    page = int(req.get("page", 1))
 | 
						|
    size = int(req.get("page_size", 30))
 | 
						|
    question = req["question"]
 | 
						|
    doc_ids = req.get("document_ids", [])
 | 
						|
    if not isinstance(doc_ids, list):
 | 
						|
        return get_error_data_result("`documents` should be a list")
 | 
						|
    doc_ids_list = KnowledgebaseService.list_documents_by_ids(kb_ids)
 | 
						|
    for doc_id in doc_ids:
 | 
						|
        if doc_id not in doc_ids_list:
 | 
						|
            return get_error_data_result(
 | 
						|
                f"The datasets don't own the document {doc_id}"
 | 
						|
            )
 | 
						|
    similarity_threshold = float(req.get("similarity_threshold", 0.2))
 | 
						|
    vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
 | 
						|
    top = int(req.get("top_k", 1024))
 | 
						|
    if req.get("highlight") == "False" or req.get("highlight") == "false":
 | 
						|
        highlight = False
 | 
						|
    else:
 | 
						|
        highlight = True
 | 
						|
    try:
 | 
						|
        e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
 | 
						|
        if not e:
 | 
						|
            return get_error_data_result(message="Dataset not found!")
 | 
						|
        embd_mdl = TenantLLMService.model_instance(
 | 
						|
            kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id
 | 
						|
        )
 | 
						|
 | 
						|
        rerank_mdl = None
 | 
						|
        if req.get("rerank_id"):
 | 
						|
            rerank_mdl = TenantLLMService.model_instance(
 | 
						|
                kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"]
 | 
						|
            )
 | 
						|
 | 
						|
        if req.get("keyword", False):
 | 
						|
            chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
 | 
						|
            question += keyword_extraction(chat_mdl, question)
 | 
						|
 | 
						|
        retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
 | 
						|
        ranks = retr.retrieval(
 | 
						|
            question,
 | 
						|
            embd_mdl,
 | 
						|
            kb.tenant_id,
 | 
						|
            kb_ids,
 | 
						|
            page,
 | 
						|
            size,
 | 
						|
            similarity_threshold,
 | 
						|
            vector_similarity_weight,
 | 
						|
            top,
 | 
						|
            doc_ids,
 | 
						|
            rerank_mdl=rerank_mdl,
 | 
						|
            highlight=highlight,
 | 
						|
        )
 | 
						|
        for c in ranks["chunks"]:
 | 
						|
            c.pop("vector", None)
 | 
						|
 | 
						|
        ##rename keys
 | 
						|
        renamed_chunks = []
 | 
						|
        for chunk in ranks["chunks"]:
 | 
						|
            key_mapping = {
 | 
						|
                "chunk_id": "id",
 | 
						|
                "content_with_weight": "content",
 | 
						|
                "doc_id": "document_id",
 | 
						|
                "important_kwd": "important_keywords",
 | 
						|
                "question_kwd": "questions",
 | 
						|
                "docnm_kwd": "document_keyword",
 | 
						|
            }
 | 
						|
            rename_chunk = {}
 | 
						|
            for key, value in chunk.items():
 | 
						|
                new_key = key_mapping.get(key, key)
 | 
						|
                rename_chunk[new_key] = value
 | 
						|
            renamed_chunks.append(rename_chunk)
 | 
						|
        ranks["chunks"] = renamed_chunks
 | 
						|
        return get_result(data=ranks)
 | 
						|
    except Exception as e:
 | 
						|
        if str(e).find("not_found") > 0:
 | 
						|
            return get_result(
 | 
						|
                message="No chunk found! Check the chunk status please!",
 | 
						|
                code=settings.RetCode.DATA_ERROR,
 | 
						|
            )
 | 
						|
        return server_error_response(e)
 |