mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-07 12:30:52 +00:00
### What problem does this PR solve? Supports jsonl or ldjson format. Feature request from [discussion](https://github.com/orgs/infiniflow/discussions/8774). ### Type of change - [x] New Feature (non-breaking change which adds functionality)
180 lines
6.2 KiB
Python
180 lines
6.2 KiB
Python
# -*- coding: utf-8 -*-
|
|
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# The following documents are mainly referenced, and only adaptation modifications have been made
|
|
# from https://github.com/langchain-ai/langchain/blob/master/libs/text-splitters/langchain_text_splitters/json.py
|
|
|
|
import json
|
|
from typing import Any
|
|
|
|
from rag.nlp import find_codec
|
|
|
|
|
|
class RAGFlowJsonParser:
|
|
def __init__(self, max_chunk_size: int = 2000, min_chunk_size: int | None = None):
|
|
super().__init__()
|
|
self.max_chunk_size = max_chunk_size * 2
|
|
self.min_chunk_size = min_chunk_size if min_chunk_size is not None else max(max_chunk_size - 200, 50)
|
|
|
|
def __call__(self, binary):
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding, errors="ignore")
|
|
|
|
if self.is_jsonl_format(txt):
|
|
sections = self._parse_jsonl(txt)
|
|
else:
|
|
sections = self._parse_json(txt)
|
|
return sections
|
|
|
|
@staticmethod
|
|
def _json_size(data: dict) -> int:
|
|
"""Calculate the size of the serialized JSON object."""
|
|
return len(json.dumps(data, ensure_ascii=False))
|
|
|
|
@staticmethod
|
|
def _set_nested_dict(d: dict, path: list[str], value: Any) -> None:
|
|
"""Set a value in a nested dictionary based on the given path."""
|
|
for key in path[:-1]:
|
|
d = d.setdefault(key, {})
|
|
d[path[-1]] = value
|
|
|
|
def _list_to_dict_preprocessing(self, data: Any) -> Any:
|
|
if isinstance(data, dict):
|
|
# Process each key-value pair in the dictionary
|
|
return {k: self._list_to_dict_preprocessing(v) for k, v in data.items()}
|
|
elif isinstance(data, list):
|
|
# Convert the list to a dictionary with index-based keys
|
|
return {str(i): self._list_to_dict_preprocessing(item) for i, item in enumerate(data)}
|
|
else:
|
|
# Base case: the item is neither a dict nor a list, so return it unchanged
|
|
return data
|
|
|
|
def _json_split(
|
|
self,
|
|
data,
|
|
current_path: list[str] | None,
|
|
chunks: list[dict] | None,
|
|
) -> list[dict]:
|
|
"""
|
|
Split json into maximum size dictionaries while preserving structure.
|
|
"""
|
|
current_path = current_path or []
|
|
chunks = chunks or [{}]
|
|
if isinstance(data, dict):
|
|
for key, value in data.items():
|
|
new_path = current_path + [key]
|
|
chunk_size = self._json_size(chunks[-1])
|
|
size = self._json_size({key: value})
|
|
remaining = self.max_chunk_size - chunk_size
|
|
|
|
if size < remaining:
|
|
# Add item to current chunk
|
|
self._set_nested_dict(chunks[-1], new_path, value)
|
|
else:
|
|
if chunk_size >= self.min_chunk_size:
|
|
# Chunk is big enough, start a new chunk
|
|
chunks.append({})
|
|
|
|
# Iterate
|
|
self._json_split(value, new_path, chunks)
|
|
else:
|
|
# handle single item
|
|
self._set_nested_dict(chunks[-1], current_path, data)
|
|
return chunks
|
|
|
|
def split_json(
|
|
self,
|
|
json_data,
|
|
convert_lists: bool = False,
|
|
) -> list[dict]:
|
|
"""Splits JSON into a list of JSON chunks"""
|
|
|
|
if convert_lists:
|
|
preprocessed_data = self._list_to_dict_preprocessing(json_data)
|
|
chunks = self._json_split(preprocessed_data, None, None)
|
|
else:
|
|
chunks = self._json_split(json_data, None, None)
|
|
|
|
# Remove the last chunk if it's empty
|
|
if not chunks[-1]:
|
|
chunks.pop()
|
|
return chunks
|
|
|
|
def split_text(
|
|
self,
|
|
json_data: dict[str, Any],
|
|
convert_lists: bool = False,
|
|
ensure_ascii: bool = True,
|
|
) -> list[str]:
|
|
"""Splits JSON into a list of JSON formatted strings"""
|
|
|
|
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)
|
|
|
|
# Convert to string
|
|
return [json.dumps(chunk, ensure_ascii=ensure_ascii) for chunk in chunks]
|
|
|
|
def _parse_json(self, content: str) -> list[str]:
|
|
sections = []
|
|
try:
|
|
json_data = json.loads(content)
|
|
chunks = self.split_json(json_data, True)
|
|
sections = [json.dumps(line, ensure_ascii=False) for line in chunks if line]
|
|
except json.JSONDecodeError:
|
|
pass
|
|
return sections
|
|
|
|
def _parse_jsonl(self, content: str) -> list[str]:
|
|
lines = content.strip().splitlines()
|
|
all_chunks = []
|
|
for line in lines:
|
|
if not line.strip():
|
|
continue
|
|
try:
|
|
data = json.loads(line)
|
|
chunks = self.split_json(data, convert_lists=True)
|
|
all_chunks.extend(json.dumps(chunk, ensure_ascii=False) for chunk in chunks if chunk)
|
|
except json.JSONDecodeError:
|
|
continue
|
|
return all_chunks
|
|
|
|
def is_jsonl_format(self, txt: str, sample_limit: int = 10, threshold: float = 0.8) -> bool:
|
|
lines = [line.strip() for line in txt.strip().splitlines() if line.strip()]
|
|
if not lines:
|
|
return False
|
|
|
|
try:
|
|
json.loads(txt)
|
|
return False
|
|
except json.JSONDecodeError:
|
|
pass
|
|
|
|
sample_limit = min(len(lines), sample_limit)
|
|
sample_lines = lines[:sample_limit]
|
|
valid_lines = sum(1 for line in sample_lines if self._is_valid_json(line))
|
|
|
|
if not valid_lines:
|
|
return False
|
|
|
|
return (valid_lines / len(sample_lines)) >= threshold
|
|
|
|
def _is_valid_json(self, line: str) -> bool:
|
|
try:
|
|
json.loads(line)
|
|
return True
|
|
except json.JSONDecodeError:
|
|
return False
|