mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	### What problem does this PR solve? Format the code ### Type of change - [x] Refactoring Signed-off-by: Jin Hai <haijin.chn@gmail.com>
		
			
				
	
	
		
			81 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
from abc import ABC
 | 
						|
import pandas as pd
 | 
						|
import pywencai
 | 
						|
from agent.component.base import ComponentBase, ComponentParamBase
 | 
						|
 | 
						|
 | 
						|
class WenCaiParam(ComponentParamBase):
 | 
						|
    """
 | 
						|
    Define the WenCai component parameters.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self):
 | 
						|
        super().__init__()
 | 
						|
        self.top_n = 10
 | 
						|
        self.query_type = "stock"
 | 
						|
 | 
						|
    def check(self):
 | 
						|
        self.check_positive_integer(self.top_n, "Top N")
 | 
						|
        self.check_valid_value(self.query_type, "Query type",
 | 
						|
                               ['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
 | 
						|
                                'futures', 'lccp',
 | 
						|
                                'foreign_exchange'])
 | 
						|
 | 
						|
 | 
						|
class WenCai(ComponentBase, ABC):
 | 
						|
    component_name = "WenCai"
 | 
						|
 | 
						|
    def _run(self, history, **kwargs):
 | 
						|
        ans = self.get_input()
 | 
						|
        ans = ",".join(ans["content"]) if "content" in ans else ""
 | 
						|
        if not ans:
 | 
						|
            return WenCai.be_output("")
 | 
						|
 | 
						|
        try:
 | 
						|
            wencai_res = []
 | 
						|
            res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
 | 
						|
            if isinstance(res, pd.DataFrame):
 | 
						|
                wencai_res.append({"content": res.to_markdown()})
 | 
						|
            if isinstance(res, dict):
 | 
						|
                for item in res.items():
 | 
						|
                    if isinstance(item[1], list):
 | 
						|
                        wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
 | 
						|
                        continue
 | 
						|
                    if isinstance(item[1], str):
 | 
						|
                        wencai_res.append({"content": item[0] + "\n" + item[1]})
 | 
						|
                        continue
 | 
						|
                    if isinstance(item[1], dict):
 | 
						|
                        if "meta" in item[1].keys():
 | 
						|
                            continue
 | 
						|
                        wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
 | 
						|
                        continue
 | 
						|
                    if isinstance(item[1], pd.DataFrame):
 | 
						|
                        if "image_url" in item[1].columns:
 | 
						|
                            continue
 | 
						|
                        wencai_res.append({"content": item[1].to_markdown()})
 | 
						|
                        continue
 | 
						|
                        
 | 
						|
                    wencai_res.append({"content": item[0] + "\n" + str(item[1])})
 | 
						|
        except Exception as e:
 | 
						|
            return WenCai.be_output("**ERROR**: " + str(e))
 | 
						|
 | 
						|
        if not wencai_res:
 | 
						|
            return WenCai.be_output("")
 | 
						|
 | 
						|
        return pd.DataFrame(wencai_res)
 |