mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 09:50:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			174 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| #  you may not use this file except in compliance with the License.
 | ||
| #  You may obtain a copy of the License at
 | ||
| #
 | ||
| #      http://www.apache.org/licenses/LICENSE-2.0
 | ||
| #
 | ||
| #  Unless required by applicable law or agreed to in writing, software
 | ||
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| #  See the License for the specific language governing permissions and
 | ||
| #  limitations under the License.
 | ||
| #
 | ||
| import base64
 | ||
| import datetime
 | ||
| import json
 | ||
| import re
 | ||
| 
 | ||
| import pandas as pd
 | ||
| import requests
 | ||
| from api.db.services.knowledgebase_service import KnowledgebaseService
 | ||
| from rag.nlp import rag_tokenizer
 | ||
| from deepdoc.parser.resume import refactor
 | ||
| from deepdoc.parser.resume import step_one, step_two
 | ||
| from rag.settings import cron_logger
 | ||
| from rag.utils import rmSpace
 | ||
| 
 | ||
| forbidden_select_fields4resume = [
 | ||
|     "name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd"
 | ||
| ]
 | ||
| 
 | ||
| 
 | ||
| def remote_call(filename, binary):
 | ||
|     q = {
 | ||
|         "header": {
 | ||
|             "uid": 1,
 | ||
|             "user": "kevinhu",
 | ||
|             "log_id": filename
 | ||
|         },
 | ||
|         "request": {
 | ||
|             "p": {
 | ||
|                 "request_id": "1",
 | ||
|                 "encrypt_type": "base64",
 | ||
|                 "filename": filename,
 | ||
|                 "langtype": '',
 | ||
|                 "fileori": base64.b64encode(binary).decode('utf-8')
 | ||
|             },
 | ||
|             "c": "resume_parse_module",
 | ||
|             "m": "resume_parse"
 | ||
|         }
 | ||
|     }
 | ||
|     for _ in range(3):
 | ||
|         try:
 | ||
|             resume = requests.post(
 | ||
|                 "http://127.0.0.1:61670/tog",
 | ||
|                 data=json.dumps(q))
 | ||
|             resume = resume.json()["response"]["results"]
 | ||
|             resume = refactor(resume)
 | ||
|             for k in ["education", "work", "project",
 | ||
|                       "training", "skill", "certificate", "language"]:
 | ||
|                 if not resume.get(k) and k in resume:
 | ||
|                     del resume[k]
 | ||
| 
 | ||
|             resume = step_one.refactor(pd.DataFrame([{"resume_content": json.dumps(resume), "tob_resume_id": "x",
 | ||
|                                                       "updated_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]))
 | ||
|             resume = step_two.parse(resume)
 | ||
|             return resume
 | ||
|         except Exception as e:
 | ||
|             cron_logger.error("Resume parser error: " + str(e))
 | ||
|     return {}
 | ||
| 
 | ||
| 
 | ||
| def chunk(filename, binary=None, callback=None, **kwargs):
 | ||
|     """
 | ||
|     The supported file formats are pdf, docx and txt.
 | ||
|     To maximize the effectiveness, parse the resume correctly, please concat us: https://github.com/infiniflow/ragflow
 | ||
|     """
 | ||
|     if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE):
 | ||
|         raise NotImplementedError("file type not supported yet(pdf supported)")
 | ||
| 
 | ||
|     if not binary:
 | ||
|         with open(filename, "rb") as f:
 | ||
|             binary = f.read()
 | ||
| 
 | ||
|     callback(0.2, "Resume parsing is going on...")
 | ||
|     resume = remote_call(filename, binary)
 | ||
|     if len(resume.keys()) < 7:
 | ||
|         callback(-1, "Resume is not successfully parsed.")
 | ||
|         raise Exception("Resume parser remote call fail!")
 | ||
|     callback(0.6, "Done parsing. Chunking...")
 | ||
|     print(json.dumps(resume, ensure_ascii=False, indent=2))
 | ||
| 
 | ||
|     field_map = {
 | ||
|         "name_kwd": "姓名/名字",
 | ||
|         "name_pinyin_kwd": "姓名拼音/名字拼音",
 | ||
|         "gender_kwd": "性别(男,女)",
 | ||
|         "age_int": "年龄/岁/年纪",
 | ||
|         "phone_kwd": "电话/手机/微信",
 | ||
|         "email_tks": "email/e-mail/邮箱",
 | ||
|         "position_name_tks": "职位/职能/岗位/职责",
 | ||
|         "expect_city_names_tks": "期望城市",
 | ||
|         "work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
 | ||
|         "corporation_name_tks": "最近就职(上班)的公司/上一家公司",
 | ||
| 
 | ||
|         "first_school_name_tks": "第一学历毕业学校",
 | ||
|         "first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
 | ||
|         "highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
 | ||
|         "first_major_tks": "第一学历专业",
 | ||
|         "edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
 | ||
| 
 | ||
|         "degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
 | ||
|         "major_tks": "学过的专业/过往专业",
 | ||
|         "school_name_tks": "学校/毕业院校",
 | ||
|         "sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)",
 | ||
|         "edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
 | ||
| 
 | ||
|         "corp_nm_tks": "就职过的公司/之前的公司/上过班的公司",
 | ||
|         "edu_end_int": "毕业年份",
 | ||
|         "industry_name_tks": "所在行业",
 | ||
| 
 | ||
|         "birth_dt": "生日/出生年份",
 | ||
|         "expect_position_name_tks": "期望职位/期望职能/期望岗位",
 | ||
|     }
 | ||
| 
 | ||
|     titles = []
 | ||
|     for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]:
 | ||
|         v = resume.get(n, "")
 | ||
|         if isinstance(v, list):
 | ||
|             v = v[0]
 | ||
|         if n.find("tks") > 0:
 | ||
|             v = rmSpace(v)
 | ||
|         titles.append(str(v))
 | ||
|     doc = {
 | ||
|         "docnm_kwd": filename,
 | ||
|         "title_tks": rag_tokenizer.tokenize("-".join(titles) + "-简历")
 | ||
|     }
 | ||
|     doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
 | ||
|     pairs = []
 | ||
|     for n, m in field_map.items():
 | ||
|         if not resume.get(n):
 | ||
|             continue
 | ||
|         v = resume[n]
 | ||
|         if isinstance(v, list):
 | ||
|             v = " ".join(v)
 | ||
|         if n.find("tks") > 0:
 | ||
|             v = rmSpace(v)
 | ||
|         pairs.append((m, str(v)))
 | ||
| 
 | ||
|     doc["content_with_weight"] = "\n".join(
 | ||
|         ["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k, v in pairs])
 | ||
|     doc["content_ltks"] = rag_tokenizer.tokenize(doc["content_with_weight"])
 | ||
|     doc["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(doc["content_ltks"])
 | ||
|     for n, _ in field_map.items():
 | ||
|         if n not in resume:
 | ||
|             continue
 | ||
|         if isinstance(resume[n], list) and (
 | ||
|                 len(resume[n]) == 1 or n not in forbidden_select_fields4resume):
 | ||
|             resume[n] = resume[n][0]
 | ||
|         if n.find("_tks") > 0:
 | ||
|             resume[n] = rag_tokenizer.fine_grained_tokenize(resume[n])
 | ||
|         doc[n] = resume[n]
 | ||
| 
 | ||
|     print(doc)
 | ||
|     KnowledgebaseService.update_parser_config(
 | ||
|         kwargs["kb_id"], {"field_map": field_map})
 | ||
|     return [doc]
 | ||
| 
 | ||
| 
 | ||
| if __name__ == "__main__":
 | ||
|     import sys
 | ||
| 
 | ||
|     def dummy(a, b):
 | ||
|         pass
 | ||
|     chunk(sys.argv[1], callback=dummy)
 | 
