mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-31 09:50:00 +00:00 
			
		
		
		
	 aa99c6b896
			
		
	
	
		aa99c6b896
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? resolve this issue:https://github.com/infiniflow/ragflow/issues/6876 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) --------- Co-authored-by: wenju.li <wenju.li@deepctr.cn>
		
			
				
	
	
		
			794 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			794 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| import json
 | |
| import re
 | |
| import time
 | |
| 
 | |
| import tiktoken
 | |
| from flask import Response, jsonify, request
 | |
| from api.db.services.conversation_service import ConversationService, iframe_completion
 | |
| from api.db.services.conversation_service import completion as rag_completion
 | |
| from api.db.services.canvas_service import completion as agent_completion, completionOpenAI
 | |
| from agent.canvas import Canvas
 | |
| from api.db import LLMType, StatusEnum
 | |
| from api.db.db_models import APIToken
 | |
| from api.db.services.api_service import API4ConversationService
 | |
| from api.db.services.canvas_service import UserCanvasService
 | |
| from api.db.services.dialog_service import DialogService, ask, chat
 | |
| from api.db.services.file_service import FileService
 | |
| from api.db.services.knowledgebase_service import KnowledgebaseService
 | |
| from api.utils import get_uuid
 | |
| from api.utils.api_utils import get_result, token_required, get_data_openai, get_error_data_result, validate_request, check_duplicate_ids
 | |
| from api.db.services.llm_service import LLMBundle
 | |
| 
 | |
| 
 | |
| 
 | |
| @manager.route("/chats/<chat_id>/sessions", methods=["POST"])  # noqa: F821
 | |
| @token_required
 | |
| def create(tenant_id, chat_id):
 | |
|     req = request.json
 | |
|     req["dialog_id"] = chat_id
 | |
|     dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
 | |
|     if not dia:
 | |
|         return get_error_data_result(message="You do not own the assistant.")
 | |
|     conv = {
 | |
|         "id": get_uuid(),
 | |
|         "dialog_id": req["dialog_id"],
 | |
|         "name": req.get("name", "New session"),
 | |
|         "message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
 | |
|         "user_id": req.get("user_id", ""),
 | |
|     }
 | |
|     if not conv.get("name"):
 | |
|         return get_error_data_result(message="`name` can not be empty.")
 | |
|     ConversationService.save(**conv)
 | |
|     e, conv = ConversationService.get_by_id(conv["id"])
 | |
|     if not e:
 | |
|         return get_error_data_result(message="Fail to create a session!")
 | |
|     conv = conv.to_dict()
 | |
|     conv["messages"] = conv.pop("message")
 | |
|     conv["chat_id"] = conv.pop("dialog_id")
 | |
|     del conv["reference"]
 | |
|     return get_result(data=conv)
 | |
| 
 | |
| 
 | |
| @manager.route("/agents/<agent_id>/sessions", methods=["POST"])  # noqa: F821
 | |
| @token_required
 | |
| def create_agent_session(tenant_id, agent_id):
 | |
|     req = request.json
 | |
|     if not request.is_json:
 | |
|         req = request.form
 | |
|     files = request.files
 | |
|     user_id = request.args.get("user_id", "")
 | |
|     e, cvs = UserCanvasService.get_by_id(agent_id)
 | |
|     if not e:
 | |
|         return get_error_data_result("Agent not found.")
 | |
|     if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
 | |
|         return get_error_data_result("You cannot access the agent.")
 | |
|     if not isinstance(cvs.dsl, str):
 | |
|         cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
 | |
| 
 | |
|     canvas = Canvas(cvs.dsl, tenant_id)
 | |
|     canvas.reset()
 | |
|     query = canvas.get_preset_param()
 | |
|     if query:
 | |
|         for ele in query:
 | |
|             if not ele["optional"]:
 | |
|                 if ele["type"] == "file":
 | |
|                     if files is None or not files.get(ele["key"]):
 | |
|                         return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
 | |
|                     upload_file = files.get(ele["key"])
 | |
|                     file_content = FileService.parse_docs([upload_file], user_id)
 | |
|                     file_name = upload_file.filename
 | |
|                     ele["value"] = file_name + "\n" + file_content
 | |
|                 else:
 | |
|                     if req is None or not req.get(ele["key"]):
 | |
|                         return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
 | |
|                     ele["value"] = req[ele["key"]]
 | |
|             else:
 | |
|                 if ele["type"] == "file":
 | |
|                     if files is not None and files.get(ele["key"]):
 | |
|                         upload_file = files.get(ele["key"])
 | |
|                         file_content = FileService.parse_docs([upload_file], user_id)
 | |
|                         file_name = upload_file.filename
 | |
|                         ele["value"] = file_name + "\n" + file_content
 | |
|                     else:
 | |
|                         if "value" in ele:
 | |
|                             ele.pop("value")
 | |
|                 else:
 | |
|                     if req is not None and req.get(ele["key"]):
 | |
|                         ele["value"] = req[ele["key"]]
 | |
|                     else:
 | |
|                         if "value" in ele:
 | |
|                             ele.pop("value")
 | |
| 
 | |
|     for ans in canvas.run(stream=False):
 | |
|         pass
 | |
| 
 | |
|     cvs.dsl = json.loads(str(canvas))
 | |
|     conv = {"id": get_uuid(), "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
 | |
|     API4ConversationService.save(**conv)
 | |
|     conv["agent_id"] = conv.pop("dialog_id")
 | |
|     return get_result(data=conv)
 | |
| 
 | |
| 
 | |
| @manager.route("/chats/<chat_id>/sessions/<session_id>", methods=["PUT"])  # noqa: F821
 | |
| @token_required
 | |
| def update(tenant_id, chat_id, session_id):
 | |
|     req = request.json
 | |
|     req["dialog_id"] = chat_id
 | |
|     conv_id = session_id
 | |
|     conv = ConversationService.query(id=conv_id, dialog_id=chat_id)
 | |
|     if not conv:
 | |
|         return get_error_data_result(message="Session does not exist")
 | |
|     if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
 | |
|         return get_error_data_result(message="You do not own the session")
 | |
|     if "message" in req or "messages" in req:
 | |
|         return get_error_data_result(message="`message` can not be change")
 | |
|     if "reference" in req:
 | |
|         return get_error_data_result(message="`reference` can not be change")
 | |
|     if "name" in req and not req.get("name"):
 | |
|         return get_error_data_result(message="`name` can not be empty.")
 | |
|     if not ConversationService.update_by_id(conv_id, req):
 | |
|         return get_error_data_result(message="Session updates error")
 | |
|     return get_result()
 | |
| 
 | |
| 
 | |
| @manager.route("/chats/<chat_id>/completions", methods=["POST"])  # noqa: F821
 | |
| @token_required
 | |
| def chat_completion(tenant_id, chat_id):
 | |
|     req = request.json
 | |
|     if not req:
 | |
|         req = {"question": ""}
 | |
|     if not req.get("session_id"):
 | |
|         req["question"] = ""
 | |
|     if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
 | |
|         return get_error_data_result(f"You don't own the chat {chat_id}")
 | |
|     if req.get("session_id"):
 | |
|         if not ConversationService.query(id=req["session_id"], dialog_id=chat_id):
 | |
|             return get_error_data_result(f"You don't own the session {req['session_id']}")
 | |
|     if req.get("stream", True):
 | |
|         resp = Response(rag_completion(tenant_id, chat_id, **req), mimetype="text/event-stream")
 | |
|         resp.headers.add_header("Cache-control", "no-cache")
 | |
|         resp.headers.add_header("Connection", "keep-alive")
 | |
|         resp.headers.add_header("X-Accel-Buffering", "no")
 | |
|         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 | |
| 
 | |
|         return resp
 | |
|     else:
 | |
|         answer = None
 | |
|         for ans in rag_completion(tenant_id, chat_id, **req):
 | |
|             answer = ans
 | |
|             break
 | |
|         return get_result(data=answer)
 | |
| 
 | |
| 
 | |
| @manager.route("/chats_openai/<chat_id>/chat/completions", methods=["POST"])  # noqa: F821
 | |
| @validate_request("model", "messages")  # noqa: F821
 | |
| @token_required
 | |
| def chat_completion_openai_like(tenant_id, chat_id):
 | |
|     """
 | |
|     OpenAI-like chat completion API that simulates the behavior of OpenAI's completions endpoint.
 | |
|     
 | |
|     This function allows users to interact with a model and receive responses based on a series of historical messages.
 | |
|     If `stream` is set to True (by default), the response will be streamed in chunks, mimicking the OpenAI-style API.
 | |
|     Set `stream` to False explicitly, the response will be returned in a single complete answer.
 | |
|     Example usage:
 | |
| 
 | |
|     curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
 | |
|         -H "Content-Type: application/json" \
 | |
|         -H "Authorization: Bearer $RAGFLOW_API_KEY" \
 | |
|         -d '{
 | |
|             "model": "model",
 | |
|             "messages": [{"role": "user", "content": "Say this is a test!"}],
 | |
|             "stream": true
 | |
|         }'
 | |
| 
 | |
|     Alternatively, you can use Python's `OpenAI` client:
 | |
| 
 | |
|     from openai import OpenAI
 | |
| 
 | |
|     model = "model"
 | |
|     client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
 | |
|     
 | |
|     completion = client.chat.completions.create(
 | |
|         model=model,
 | |
|         messages=[
 | |
|             {"role": "system", "content": "You are a helpful assistant."},
 | |
|             {"role": "user", "content": "Who are you?"},
 | |
|             {"role": "assistant", "content": "I am an AI assistant named..."},
 | |
|             {"role": "user", "content": "Can you tell me how to install neovim"},
 | |
|         ],
 | |
|         stream=True
 | |
|     )
 | |
|     
 | |
|     stream = True
 | |
|     if stream:
 | |
|         for chunk in completion:
 | |
|             print(chunk)
 | |
|     else:
 | |
|         print(completion.choices[0].message.content)
 | |
|     """
 | |
|     req = request.json
 | |
| 
 | |
|     messages = req.get("messages", [])
 | |
|     # To prevent empty [] input
 | |
|     if len(messages) < 1:
 | |
|         return get_error_data_result("You have to provide messages.")
 | |
|     if messages[-1]["role"] != "user":
 | |
|         return get_error_data_result("The last content of this conversation is not from user.")
 | |
| 
 | |
|     prompt = messages[-1]["content"]
 | |
|     # Treat context tokens as reasoning tokens
 | |
|     context_token_used = sum(len(message["content"]) for message in messages)
 | |
| 
 | |
|     dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
 | |
|     if not dia:
 | |
|         return get_error_data_result(f"You don't own the chat {chat_id}")
 | |
|     dia = dia[0]
 | |
| 
 | |
|     # Filter system and non-sense assistant messages
 | |
|     msg = []
 | |
|     for m in messages:
 | |
|         if m["role"] == "system":
 | |
|             continue
 | |
|         if m["role"] == "assistant" and not msg:
 | |
|             continue
 | |
|         msg.append(m)
 | |
| 
 | |
|     # tools = get_tools()
 | |
|     # toolcall_session = SimpleFunctionCallServer()
 | |
|     tools = None
 | |
|     toolcall_session = None
 | |
| 
 | |
|     if req.get("stream", True):
 | |
|         # The value for the usage field on all chunks except for the last one will be null.
 | |
|         # The usage field on the last chunk contains token usage statistics for the entire request.
 | |
|         # The choices field on the last chunk will always be an empty array [].
 | |
|         def streamed_response_generator(chat_id, dia, msg):
 | |
|             token_used = 0
 | |
|             answer_cache = ""
 | |
|             reasoning_cache = ""
 | |
|             response = {
 | |
|                 "id": f"chatcmpl-{chat_id}",
 | |
|                 "choices": [{"delta": {"content": "", "role": "assistant", "function_call": None, "tool_calls": None, "reasoning_content": ""}, "finish_reason": None, "index": 0, "logprobs": None}],
 | |
|                 "created": int(time.time()),
 | |
|                 "model": "model",
 | |
|                 "object": "chat.completion.chunk",
 | |
|                 "system_fingerprint": "",
 | |
|                 "usage": None,
 | |
|             }
 | |
| 
 | |
|             try:
 | |
|                 for ans in chat(dia, msg, True, toolcall_session=toolcall_session, tools=tools):
 | |
|                     answer = ans["answer"]
 | |
| 
 | |
|                     reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
 | |
|                     if reasoning_match:
 | |
|                         reasoning_part = reasoning_match.group(1)
 | |
|                         content_part = answer[reasoning_match.end() :]
 | |
|                     else:
 | |
|                         reasoning_part = ""
 | |
|                         content_part = answer
 | |
| 
 | |
|                     reasoning_incremental = ""
 | |
|                     if reasoning_part:
 | |
|                         if reasoning_part.startswith(reasoning_cache):
 | |
|                             reasoning_incremental = reasoning_part.replace(reasoning_cache, "", 1)
 | |
|                         else:
 | |
|                             reasoning_incremental = reasoning_part
 | |
|                         reasoning_cache = reasoning_part
 | |
| 
 | |
|                     content_incremental = ""
 | |
|                     if content_part:
 | |
|                         if content_part.startswith(answer_cache):
 | |
|                             content_incremental = content_part.replace(answer_cache, "", 1)
 | |
|                     else:
 | |
|                         content_incremental = content_part
 | |
|                     answer_cache = content_part
 | |
| 
 | |
|                     token_used += len(reasoning_incremental) + len(content_incremental)
 | |
| 
 | |
|                     if not any([reasoning_incremental, content_incremental]):
 | |
|                         continue
 | |
| 
 | |
|                     if reasoning_incremental:
 | |
|                         response["choices"][0]["delta"]["reasoning_content"] = reasoning_incremental
 | |
|                     else:
 | |
|                         response["choices"][0]["delta"]["reasoning_content"] = None
 | |
| 
 | |
|                     if content_incremental:
 | |
|                         response["choices"][0]["delta"]["content"] = content_incremental
 | |
|                     else:
 | |
|                         response["choices"][0]["delta"]["content"] = None
 | |
| 
 | |
|                     yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
 | |
|             except Exception as e:
 | |
|                 response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
 | |
|                 yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
 | |
| 
 | |
|             # The last chunk
 | |
|             response["choices"][0]["delta"]["content"] = None
 | |
|             response["choices"][0]["delta"]["reasoning_content"] = None
 | |
|             response["choices"][0]["finish_reason"] = "stop"
 | |
|             response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
 | |
|             yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
 | |
|             yield "data:[DONE]\n\n"
 | |
| 
 | |
|         resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
 | |
|         resp.headers.add_header("Cache-control", "no-cache")
 | |
|         resp.headers.add_header("Connection", "keep-alive")
 | |
|         resp.headers.add_header("X-Accel-Buffering", "no")
 | |
|         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 | |
|         return resp
 | |
|     else:
 | |
|         answer = None
 | |
|         for ans in chat(dia, msg, False, toolcall_session=toolcall_session, tools=tools):
 | |
|             # focus answer content only
 | |
|             answer = ans
 | |
|             break
 | |
|         content = answer["answer"]
 | |
| 
 | |
|         response = {
 | |
|             "id": f"chatcmpl-{chat_id}",
 | |
|             "object": "chat.completion",
 | |
|             "created": int(time.time()),
 | |
|             "model": req.get("model", ""),
 | |
|             "usage": {
 | |
|                 "prompt_tokens": len(prompt),
 | |
|                 "completion_tokens": len(content),
 | |
|                 "total_tokens": len(prompt) + len(content),
 | |
|                 "completion_tokens_details": {
 | |
|                     "reasoning_tokens": context_token_used,
 | |
|                     "accepted_prediction_tokens": len(content),
 | |
|                     "rejected_prediction_tokens": 0,  # 0 for simplicity
 | |
|                 },
 | |
|             },
 | |
|             "choices": [{"message": {"role": "assistant", "content": content}, "logprobs": None, "finish_reason": "stop", "index": 0}],
 | |
|         }
 | |
|         return jsonify(response)
 | |
| 
 | |
| @manager.route('/agents_openai/<agent_id>/chat/completions', methods=['POST'])  # noqa: F821
 | |
| @validate_request("model", "messages")  # noqa: F821
 | |
| @token_required
 | |
| def agents_completion_openai_compatibility (tenant_id, agent_id):
 | |
|     req = request.json
 | |
|     tiktokenenc = tiktoken.get_encoding("cl100k_base")
 | |
|     messages = req.get("messages", [])
 | |
|     if not messages:
 | |
|         return get_error_data_result("You must provide at least one message.")
 | |
|     if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
 | |
|         return get_error_data_result(f"You don't own the agent {agent_id}")
 | |
|   
 | |
|     filtered_messages = [m for m in messages if m["role"] in ["user", "assistant"]]
 | |
|     prompt_tokens = sum(len(tiktokenenc.encode(m["content"])) for m in filtered_messages)
 | |
|     if not filtered_messages:
 | |
|         return jsonify(get_data_openai( 
 | |
|             id=agent_id,
 | |
|             content="No valid messages found (user or assistant).",
 | |
|             finish_reason="stop",
 | |
|             model=req.get("model", ""), 
 | |
|             completion_tokens=len(tiktokenenc.encode("No valid messages found (user or assistant).")),
 | |
|             prompt_tokens=prompt_tokens, 
 | |
|         ))
 | |
|     
 | |
|     # Get the last user message as the question
 | |
|     question = next((m["content"] for m in reversed(messages) if m["role"] == "user"), "")
 | |
|     
 | |
|     if req.get("stream", True):
 | |
|         return Response(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", ""), stream=True), mimetype="text/event-stream")
 | |
|     else:
 | |
|         # For non-streaming, just return the response directly
 | |
|         response = next(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", ""), stream=False))
 | |
|         return jsonify(response)
 | |
|     
 | |
| 
 | |
| @manager.route("/agents/<agent_id>/completions", methods=["POST"])  # noqa: F821
 | |
| @token_required
 | |
| def agent_completions(tenant_id, agent_id):
 | |
|     req = request.json
 | |
|     cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
 | |
|     if not cvs:
 | |
|         return get_error_data_result(f"You don't own the agent {agent_id}")
 | |
|     if req.get("session_id"):
 | |
|         dsl = cvs[0].dsl
 | |
|         if not isinstance(dsl, str):
 | |
|             dsl = json.dumps(dsl)
 | |
| 
 | |
|         conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
 | |
|         if not conv:
 | |
|             return get_error_data_result(f"You don't own the session {req['session_id']}")
 | |
|         # If an update to UserCanvas is detected, update the API4Conversation.dsl
 | |
|         sync_dsl = req.get("sync_dsl", False)
 | |
|         if sync_dsl is True and cvs[0].update_time > conv[0].update_time:
 | |
|             current_dsl = conv[0].dsl
 | |
|             new_dsl = json.loads(dsl)
 | |
|             state_fields = ["history", "messages", "path", "reference"]
 | |
|             states = {field: current_dsl.get(field, []) for field in state_fields}
 | |
|             current_dsl.update(new_dsl)
 | |
|             current_dsl.update(states)
 | |
|             API4ConversationService.update_by_id(req["session_id"], {"dsl": current_dsl})
 | |
|     else:
 | |
|         req["question"] = ""
 | |
|     if req.get("stream", True):
 | |
|         resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
 | |
|         resp.headers.add_header("Cache-control", "no-cache")
 | |
|         resp.headers.add_header("Connection", "keep-alive")
 | |
|         resp.headers.add_header("X-Accel-Buffering", "no")
 | |
|         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 | |
|         return resp
 | |
|     try:
 | |
|         for answer in agent_completion(tenant_id, agent_id, **req):
 | |
|             return get_result(data=answer)
 | |
|     except Exception as e:
 | |
|         return get_error_data_result(str(e))
 | |
| 
 | |
| 
 | |
| @manager.route("/chats/<chat_id>/sessions", methods=["GET"])  # noqa: F821
 | |
| @token_required
 | |
| def list_session(tenant_id, chat_id):
 | |
|     if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
 | |
|         return get_error_data_result(message=f"You don't own the assistant {chat_id}.")
 | |
|     id = request.args.get("id")
 | |
|     name = request.args.get("name")
 | |
|     page_number = int(request.args.get("page", 1))
 | |
|     items_per_page = int(request.args.get("page_size", 30))
 | |
|     orderby = request.args.get("orderby", "create_time")
 | |
|     user_id = request.args.get("user_id")
 | |
|     if request.args.get("desc") == "False" or request.args.get("desc") == "false":
 | |
|         desc = False
 | |
|     else:
 | |
|         desc = True
 | |
|     convs = ConversationService.get_list(chat_id, page_number, items_per_page, orderby, desc, id, name, user_id)
 | |
|     if not convs:
 | |
|         return get_result(data=[])
 | |
|     for conv in convs:
 | |
|         conv["messages"] = conv.pop("message")
 | |
|         infos = conv["messages"]
 | |
|         for info in infos:
 | |
|             if "prompt" in info:
 | |
|                 info.pop("prompt")
 | |
|         conv["chat_id"] = conv.pop("dialog_id")
 | |
|         if conv["reference"]:
 | |
|             messages = conv["messages"]
 | |
|             message_num = 0
 | |
|             chunk_num = 0
 | |
|             while message_num < len(messages):
 | |
|                 if message_num != 0 and messages[message_num]["role"] != "user":
 | |
|                     chunk_list = []
 | |
|                     if "chunks" in conv["reference"][chunk_num]:
 | |
|                         chunks = conv["reference"][chunk_num]["chunks"]
 | |
|                         for chunk in chunks:
 | |
|                             new_chunk = {
 | |
|                                 "id": chunk.get("chunk_id", chunk.get("id")),
 | |
|                                 "content": chunk.get("content_with_weight", chunk.get("content")),
 | |
|                                 "document_id": chunk.get("doc_id", chunk.get("document_id")),
 | |
|                                 "document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
 | |
|                                 "dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
 | |
|                                 "image_id": chunk.get("image_id", chunk.get("img_id")),
 | |
|                                 "positions": chunk.get("positions", chunk.get("position_int")),
 | |
|                             }
 | |
| 
 | |
|                             chunk_list.append(new_chunk)
 | |
|                     chunk_num += 1
 | |
|                     messages[message_num]["reference"] = chunk_list
 | |
|                 message_num += 1
 | |
|         del conv["reference"]
 | |
|     return get_result(data=convs)
 | |
| 
 | |
| 
 | |
| @manager.route("/agents/<agent_id>/sessions", methods=["GET"])  # noqa: F821
 | |
| @token_required
 | |
| def list_agent_session(tenant_id, agent_id):
 | |
|     if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
 | |
|         return get_error_data_result(message=f"You don't own the agent {agent_id}.")
 | |
|     id = request.args.get("id")
 | |
|     user_id = request.args.get("user_id")
 | |
|     page_number = int(request.args.get("page", 1))
 | |
|     items_per_page = int(request.args.get("page_size", 30))
 | |
|     orderby = request.args.get("orderby", "update_time")
 | |
|     if request.args.get("desc") == "False" or request.args.get("desc") == "false":
 | |
|         desc = False
 | |
|     else:
 | |
|         desc = True
 | |
|     # dsl defaults to True in all cases except for False and false
 | |
|     include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
 | |
|     convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
 | |
|     if not convs:
 | |
|         return get_result(data=[])
 | |
|     for conv in convs:
 | |
|         conv["messages"] = conv.pop("message")
 | |
|         infos = conv["messages"]
 | |
|         for info in infos:
 | |
|             if "prompt" in info:
 | |
|                 info.pop("prompt")
 | |
|         conv["agent_id"] = conv.pop("dialog_id")
 | |
|         if conv["reference"]:
 | |
|             messages = conv["messages"]
 | |
|             message_num = 0
 | |
|             chunk_num = 0
 | |
|             while message_num < len(messages):
 | |
|                 if message_num != 0 and messages[message_num]["role"] != "user":
 | |
|                     chunk_list = []
 | |
|                     if "chunks" in conv["reference"][chunk_num]:
 | |
|                         chunks = conv["reference"][chunk_num]["chunks"]
 | |
|                         for chunk in chunks:
 | |
|                             new_chunk = {
 | |
|                                 "id": chunk.get("chunk_id", chunk.get("id")),
 | |
|                                 "content": chunk.get("content_with_weight", chunk.get("content")),
 | |
|                                 "document_id": chunk.get("doc_id", chunk.get("document_id")),
 | |
|                                 "document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
 | |
|                                 "dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
 | |
|                                 "image_id": chunk.get("image_id", chunk.get("img_id")),
 | |
|                                 "positions": chunk.get("positions", chunk.get("position_int")),
 | |
|                             }
 | |
|                             chunk_list.append(new_chunk)
 | |
|                     chunk_num += 1
 | |
|                     messages[message_num]["reference"] = chunk_list
 | |
|                 message_num += 1
 | |
|         del conv["reference"]
 | |
|     return get_result(data=convs)
 | |
| 
 | |
| 
 | |
| @manager.route("/chats/<chat_id>/sessions", methods=["DELETE"])  # noqa: F821
 | |
| @token_required
 | |
| def delete(tenant_id, chat_id):
 | |
|     if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
 | |
|         return get_error_data_result(message="You don't own the chat")
 | |
|     
 | |
|     errors = []
 | |
|     success_count = 0
 | |
|     req = request.json
 | |
|     convs = ConversationService.query(dialog_id=chat_id)
 | |
|     if not req:
 | |
|         ids = None
 | |
|     else:
 | |
|         ids = req.get("ids")
 | |
| 
 | |
|     if not ids:
 | |
|         conv_list = []
 | |
|         for conv in convs:
 | |
|             conv_list.append(conv.id)
 | |
|     else:
 | |
|         conv_list = ids
 | |
|     
 | |
|     unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
 | |
|     conv_list = unique_conv_ids
 | |
|     
 | |
|     for id in conv_list:
 | |
|         conv = ConversationService.query(id=id, dialog_id=chat_id)
 | |
|         if not conv:
 | |
|             errors.append(f"The chat doesn't own the session {id}")
 | |
|             continue
 | |
|         ConversationService.delete_by_id(id)
 | |
|         success_count += 1
 | |
|     
 | |
|     if errors:
 | |
|         if success_count > 0:
 | |
|             return get_result(
 | |
|                 data={"success_count": success_count, "errors": errors},
 | |
|                 message=f"Partially deleted {success_count} sessions with {len(errors)} errors"
 | |
|             )
 | |
|         else:
 | |
|             return get_error_data_result(message="; ".join(errors))
 | |
|     
 | |
|     if duplicate_messages:
 | |
|         if success_count > 0:
 | |
|             return get_result(
 | |
|                 message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", 
 | |
|                 data={"success_count": success_count, "errors": duplicate_messages}
 | |
|             )
 | |
|         else:
 | |
|             return get_error_data_result(message=";".join(duplicate_messages))
 | |
|     
 | |
|     return get_result()
 | |
| 
 | |
| 
 | |
| @manager.route("/agents/<agent_id>/sessions", methods=["DELETE"])  # noqa: F821
 | |
| @token_required
 | |
| def delete_agent_session(tenant_id, agent_id):
 | |
|     errors = []
 | |
|     success_count = 0
 | |
|     req = request.json
 | |
|     cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
 | |
|     if not cvs:
 | |
|         return get_error_data_result(f"You don't own the agent {agent_id}")
 | |
| 
 | |
|     convs = API4ConversationService.query(dialog_id=agent_id)
 | |
|     if not convs:
 | |
|         return get_error_data_result(f"Agent {agent_id} has no sessions")
 | |
| 
 | |
|     if not req:
 | |
|         ids = None
 | |
|     else:
 | |
|         ids = req.get("ids")
 | |
| 
 | |
|     if not ids:
 | |
|         conv_list = []
 | |
|         for conv in convs:
 | |
|             conv_list.append(conv.id)
 | |
|     else:
 | |
|         conv_list = ids
 | |
| 
 | |
|     unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
 | |
|     conv_list = unique_conv_ids
 | |
| 
 | |
|     for session_id in conv_list:
 | |
|         conv = API4ConversationService.query(id=session_id, dialog_id=agent_id)
 | |
|         if not conv:
 | |
|             errors.append(f"The agent doesn't own the session {session_id}")
 | |
|             continue
 | |
|         API4ConversationService.delete_by_id(session_id)
 | |
|         success_count += 1
 | |
|     
 | |
|     if errors:
 | |
|         if success_count > 0:
 | |
|             return get_result(
 | |
|                 data={"success_count": success_count, "errors": errors},
 | |
|                 message=f"Partially deleted {success_count} sessions with {len(errors)} errors"
 | |
|             )
 | |
|         else:
 | |
|             return get_error_data_result(message="; ".join(errors))
 | |
|     
 | |
|     if duplicate_messages:
 | |
|         if success_count > 0:
 | |
|             return get_result(
 | |
|                 message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", 
 | |
|                 data={"success_count": success_count, "errors": duplicate_messages}
 | |
|             )
 | |
|         else:
 | |
|             return get_error_data_result(message=";".join(duplicate_messages))
 | |
|     
 | |
|     return get_result()
 | |
| 
 | |
| 
 | |
| @manager.route("/sessions/ask", methods=["POST"])  # noqa: F821
 | |
| @token_required
 | |
| def ask_about(tenant_id):
 | |
|     req = request.json
 | |
|     if not req.get("question"):
 | |
|         return get_error_data_result("`question` is required.")
 | |
|     if not req.get("dataset_ids"):
 | |
|         return get_error_data_result("`dataset_ids` is required.")
 | |
|     if not isinstance(req.get("dataset_ids"), list):
 | |
|         return get_error_data_result("`dataset_ids` should be a list.")
 | |
|     req["kb_ids"] = req.pop("dataset_ids")
 | |
|     for kb_id in req["kb_ids"]:
 | |
|         if not KnowledgebaseService.accessible(kb_id, tenant_id):
 | |
|             return get_error_data_result(f"You don't own the dataset {kb_id}.")
 | |
|         kbs = KnowledgebaseService.query(id=kb_id)
 | |
|         kb = kbs[0]
 | |
|         if kb.chunk_num == 0:
 | |
|             return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
 | |
|     uid = tenant_id
 | |
| 
 | |
|     def stream():
 | |
|         nonlocal req, uid
 | |
|         try:
 | |
|             for ans in ask(req["question"], req["kb_ids"], uid):
 | |
|                 yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
 | |
|         except Exception as e:
 | |
|             yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
 | |
|         yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
 | |
| 
 | |
|     resp = Response(stream(), mimetype="text/event-stream")
 | |
|     resp.headers.add_header("Cache-control", "no-cache")
 | |
|     resp.headers.add_header("Connection", "keep-alive")
 | |
|     resp.headers.add_header("X-Accel-Buffering", "no")
 | |
|     resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 | |
|     return resp
 | |
| 
 | |
| 
 | |
| @manager.route("/sessions/related_questions", methods=["POST"])  # noqa: F821
 | |
| @token_required
 | |
| def related_questions(tenant_id):
 | |
|     req = request.json
 | |
|     if not req.get("question"):
 | |
|         return get_error_data_result("`question` is required.")
 | |
|     question = req["question"]
 | |
|     chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
 | |
|     prompt = """
 | |
| Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
 | |
| Instructions:
 | |
|  - Based on the keywords provided by the user, generate 5-10 related search terms.
 | |
|  - Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
 | |
|  - Use common, general terms as much as possible, avoiding obscure words or technical jargon.
 | |
|  - Keep the term length between 2-4 words, concise and clear.
 | |
|  - DO NOT translate, use the language of the original keywords.
 | |
| 
 | |
| ### Example:
 | |
| Keywords: Chinese football
 | |
| Related search terms:
 | |
| 1. Current status of Chinese football
 | |
| 2. Reform of Chinese football
 | |
| 3. Youth training of Chinese football
 | |
| 4. Chinese football in the Asian Cup
 | |
| 5. Chinese football in the World Cup
 | |
| 
 | |
| Reason:
 | |
|  - When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
 | |
|  - Generating related search terms can help users dig deeper into relevant information and improve search efficiency. 
 | |
|  - At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
 | |
| 
 | |
| """
 | |
|     ans = chat_mdl.chat(
 | |
|         prompt,
 | |
|         [
 | |
|             {
 | |
|                 "role": "user",
 | |
|                 "content": f"""
 | |
| Keywords: {question}
 | |
| Related search terms:
 | |
|     """,
 | |
|             }
 | |
|         ],
 | |
|         {"temperature": 0.9},
 | |
|     )
 | |
|     return get_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
 | |
| 
 | |
| 
 | |
| @manager.route("/chatbots/<dialog_id>/completions", methods=["POST"])  # noqa: F821
 | |
| def chatbot_completions(dialog_id):
 | |
|     req = request.json
 | |
| 
 | |
|     token = request.headers.get("Authorization").split()
 | |
|     if len(token) != 2:
 | |
|         return get_error_data_result(message='Authorization is not valid!"')
 | |
|     token = token[1]
 | |
|     objs = APIToken.query(beta=token)
 | |
|     if not objs:
 | |
|         return get_error_data_result(message='Authentication error: API key is invalid!"')
 | |
| 
 | |
|     if "quote" not in req:
 | |
|         req["quote"] = False
 | |
| 
 | |
|     if req.get("stream", True):
 | |
|         resp = Response(iframe_completion(dialog_id, **req), mimetype="text/event-stream")
 | |
|         resp.headers.add_header("Cache-control", "no-cache")
 | |
|         resp.headers.add_header("Connection", "keep-alive")
 | |
|         resp.headers.add_header("X-Accel-Buffering", "no")
 | |
|         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 | |
|         return resp
 | |
| 
 | |
|     for answer in iframe_completion(dialog_id, **req):
 | |
|         return get_result(data=answer)
 | |
| 
 | |
| 
 | |
| @manager.route("/agentbots/<agent_id>/completions", methods=["POST"])  # noqa: F821
 | |
| def agent_bot_completions(agent_id):
 | |
|     req = request.json
 | |
| 
 | |
|     token = request.headers.get("Authorization").split()
 | |
|     if len(token) != 2:
 | |
|         return get_error_data_result(message='Authorization is not valid!"')
 | |
|     token = token[1]
 | |
|     objs = APIToken.query(beta=token)
 | |
|     if not objs:
 | |
|         return get_error_data_result(message='Authentication error: API key is invalid!"')
 | |
| 
 | |
|     if "quote" not in req:
 | |
|         req["quote"] = False
 | |
| 
 | |
|     if req.get("stream", True):
 | |
|         resp = Response(agent_completion(objs[0].tenant_id, agent_id, **req), mimetype="text/event-stream")
 | |
|         resp.headers.add_header("Cache-control", "no-cache")
 | |
|         resp.headers.add_header("Connection", "keep-alive")
 | |
|         resp.headers.add_header("X-Accel-Buffering", "no")
 | |
|         resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 | |
|         return resp
 | |
| 
 | |
|     for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
 | |
|         return get_result(data=answer)
 |