mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-10-30 17:29:40 +00:00 
			
		
		
		
	 92ab7ef659
			
		
	
	
		92ab7ef659
		
			
		
	
	
	
	
		
			
			### What problem does this PR solve? Refactor embedding batch_size. Close #3657 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [x] Refactoring
		
			
				
	
	
		
			309 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			309 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | |
| #
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #
 | |
| #      http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| #
 | |
| import json
 | |
| import os
 | |
| import sys
 | |
| import time
 | |
| import argparse
 | |
| from collections import defaultdict
 | |
| 
 | |
| from api.db import LLMType
 | |
| from api.db.services.llm_service import LLMBundle
 | |
| from api.db.services.knowledgebase_service import KnowledgebaseService
 | |
| from api import settings
 | |
| from api.utils import get_uuid
 | |
| from rag.nlp import tokenize, search
 | |
| from ranx import evaluate
 | |
| from ranx import Qrels, Run
 | |
| import pandas as pd
 | |
| from tqdm import tqdm
 | |
| 
 | |
| global max_docs
 | |
| max_docs = sys.maxsize
 | |
| 
 | |
| 
 | |
| class Benchmark:
 | |
|     def __init__(self, kb_id):
 | |
|         self.kb_id = kb_id
 | |
|         e, self.kb = KnowledgebaseService.get_by_id(kb_id)
 | |
|         self.similarity_threshold = self.kb.similarity_threshold
 | |
|         self.vector_similarity_weight = self.kb.vector_similarity_weight
 | |
|         self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language)
 | |
|         self.tenant_id = ''
 | |
|         self.index_name = ''
 | |
|         self.initialized_index = False
 | |
| 
 | |
|     def _get_retrieval(self, qrels):
 | |
|         # Need to wait for the ES and Infinity index to be ready
 | |
|         time.sleep(20)
 | |
|         run = defaultdict(dict)
 | |
|         query_list = list(qrels.keys())
 | |
|         for query in query_list:
 | |
|             ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
 | |
|                                             0.0, self.vector_similarity_weight)
 | |
|             if len(ranks["chunks"]) == 0:
 | |
|                 print(f"deleted query: {query}")
 | |
|                 del qrels[query]
 | |
|                 continue
 | |
|             for c in ranks["chunks"]:
 | |
|                 c.pop("vector", None)
 | |
|                 run[query][c["chunk_id"]] = c["similarity"]
 | |
|         return run
 | |
| 
 | |
|     def embedding(self, docs):
 | |
|         texts = [d["content_with_weight"] for d in docs]
 | |
|         embeddings, _ = self.embd_mdl.encode(texts)
 | |
|         assert len(docs) == len(embeddings)
 | |
|         vector_size = 0
 | |
|         for i, d in enumerate(docs):
 | |
|             v = embeddings[i]
 | |
|             vector_size = len(v)
 | |
|             d["q_%d_vec" % len(v)] = v
 | |
|         return docs, vector_size
 | |
| 
 | |
|     def init_index(self, vector_size: int):
 | |
|         if self.initialized_index:
 | |
|             return
 | |
|         if settings.docStoreConn.indexExist(self.index_name, self.kb_id):
 | |
|             settings.docStoreConn.deleteIdx(self.index_name, self.kb_id)
 | |
|         settings.docStoreConn.createIdx(self.index_name, self.kb_id, vector_size)
 | |
|         self.initialized_index = True
 | |
| 
 | |
|     def ms_marco_index(self, file_path, index_name):
 | |
|         qrels = defaultdict(dict)
 | |
|         texts = defaultdict(dict)
 | |
|         docs_count = 0
 | |
|         docs = []
 | |
|         filelist = sorted(os.listdir(file_path))
 | |
| 
 | |
|         for fn in filelist:
 | |
|             if docs_count >= max_docs:
 | |
|                 break
 | |
|             if not fn.endswith(".parquet"):
 | |
|                 continue
 | |
|             data = pd.read_parquet(os.path.join(file_path, fn))
 | |
|             for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn):
 | |
|                 if docs_count >= max_docs:
 | |
|                     break
 | |
|                 query = data.iloc[i]['query']
 | |
|                 for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
 | |
|                     d = {
 | |
|                         "id": get_uuid(),
 | |
|                         "kb_id": self.kb.id,
 | |
|                         "docnm_kwd": "xxxxx",
 | |
|                         "doc_id": "ksksks"
 | |
|                     }
 | |
|                     tokenize(d, text, "english")
 | |
|                     docs.append(d)
 | |
|                     texts[d["id"]] = text
 | |
|                     qrels[query][d["id"]] = int(rel)
 | |
|                 if len(docs) >= 32:
 | |
|                     docs_count += len(docs)
 | |
|                     docs, vector_size = self.embedding(docs)
 | |
|                     self.init_index(vector_size)
 | |
|                     settings.docStoreConn.insert(docs, self.index_name, self.kb_id)
 | |
|                     docs = []
 | |
| 
 | |
|         if docs:
 | |
|             docs, vector_size = self.embedding(docs)
 | |
|             self.init_index(vector_size)
 | |
|             settings.docStoreConn.insert(docs, self.index_name, self.kb_id)
 | |
|         return qrels, texts
 | |
| 
 | |
|     def trivia_qa_index(self, file_path, index_name):
 | |
|         qrels = defaultdict(dict)
 | |
|         texts = defaultdict(dict)
 | |
|         docs_count = 0
 | |
|         docs = []
 | |
|         filelist = sorted(os.listdir(file_path))
 | |
|         for fn in filelist:
 | |
|             if docs_count >= max_docs:
 | |
|                 break
 | |
|             if not fn.endswith(".parquet"):
 | |
|                 continue
 | |
|             data = pd.read_parquet(os.path.join(file_path, fn))
 | |
|             for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn):
 | |
|                 if docs_count >= max_docs:
 | |
|                     break
 | |
|                 query = data.iloc[i]['question']
 | |
|                 for rel, text in zip(data.iloc[i]["search_results"]['rank'],
 | |
|                                      data.iloc[i]["search_results"]['search_context']):
 | |
|                     d = {
 | |
|                         "id": get_uuid(),
 | |
|                         "kb_id": self.kb.id,
 | |
|                         "docnm_kwd": "xxxxx",
 | |
|                         "doc_id": "ksksks"
 | |
|                     }
 | |
|                     tokenize(d, text, "english")
 | |
|                     docs.append(d)
 | |
|                     texts[d["id"]] = text
 | |
|                     qrels[query][d["id"]] = int(rel)
 | |
|                 if len(docs) >= 32:
 | |
|                     docs_count += len(docs)
 | |
|                     docs, vector_size = self.embedding(docs)
 | |
|                     self.init_index(vector_size)
 | |
|                     settings.docStoreConn.insert(docs,self.index_name)
 | |
|                     docs = []
 | |
| 
 | |
|         docs, vector_size = self.embedding(docs)
 | |
|         self.init_index(vector_size)
 | |
|         settings.docStoreConn.insert(docs, self.index_name)
 | |
|         return qrels, texts
 | |
| 
 | |
|     def miracl_index(self, file_path, corpus_path, index_name):
 | |
|         corpus_total = {}
 | |
|         for corpus_file in os.listdir(corpus_path):
 | |
|             tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
 | |
|             for index, i in tmp_data.iterrows():
 | |
|                 corpus_total[i['docid']] = i['text']
 | |
| 
 | |
|         topics_total = {}
 | |
|         for topics_file in os.listdir(os.path.join(file_path, 'topics')):
 | |
|             if 'test' in topics_file:
 | |
|                 continue
 | |
|             tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
 | |
|             for index, i in tmp_data.iterrows():
 | |
|                 topics_total[i['qid']] = i['query']
 | |
| 
 | |
|         qrels = defaultdict(dict)
 | |
|         texts = defaultdict(dict)
 | |
|         docs_count = 0
 | |
|         docs = []
 | |
|         for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
 | |
|             if 'test' in qrels_file:
 | |
|                 continue
 | |
|             if docs_count >= max_docs:
 | |
|                 break
 | |
| 
 | |
|             tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
 | |
|                                    names=['qid', 'Q0', 'docid', 'relevance'])
 | |
|             for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
 | |
|                 if docs_count >= max_docs:
 | |
|                     break
 | |
|                 query = topics_total[tmp_data.iloc[i]['qid']]
 | |
|                 text = corpus_total[tmp_data.iloc[i]['docid']]
 | |
|                 rel = tmp_data.iloc[i]['relevance']
 | |
|                 d = {
 | |
|                     "id": get_uuid(),
 | |
|                     "kb_id": self.kb.id,
 | |
|                     "docnm_kwd": "xxxxx",
 | |
|                     "doc_id": "ksksks"
 | |
|                 }
 | |
|                 tokenize(d, text, 'english')
 | |
|                 docs.append(d)
 | |
|                 texts[d["id"]] = text
 | |
|                 qrels[query][d["id"]] = int(rel)
 | |
|                 if len(docs) >= 32:
 | |
|                     docs_count += len(docs)
 | |
|                     docs, vector_size = self.embedding(docs)
 | |
|                     self.init_index(vector_size)
 | |
|                     settings.docStoreConn.insert(docs, self.index_name)
 | |
|                     docs = []
 | |
| 
 | |
|         docs, vector_size = self.embedding(docs)
 | |
|         self.init_index(vector_size)
 | |
|         settings.docStoreConn.insert(docs, self.index_name)
 | |
|         return qrels, texts
 | |
| 
 | |
|     def save_results(self, qrels, run, texts, dataset, file_path):
 | |
|         keep_result = []
 | |
|         run_keys = list(run.keys())
 | |
|         for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
 | |
|             key = run_keys[run_i]
 | |
|             keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
 | |
|                                 'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
 | |
|         keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
 | |
|         with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
 | |
|             f.write('## Score For Every Query\n')
 | |
|             for keep_result_i in keep_result:
 | |
|                 f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
 | |
|                 scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
 | |
|                 scores = sorted(scores, key=lambda kk: kk[1])
 | |
|                 for score in scores[:10]:
 | |
|                     f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
 | |
|         json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+", encoding='utf-8'), indent=2)
 | |
|         json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+", encoding='utf-8'), indent=2)
 | |
|         print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
 | |
| 
 | |
|     def __call__(self, dataset, file_path, miracl_corpus=''):
 | |
|         if dataset == "ms_marco_v1.1":
 | |
|             self.tenant_id = "benchmark_ms_marco_v11"
 | |
|             self.index_name = search.index_name(self.tenant_id)
 | |
|             qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
 | |
|             run = self._get_retrieval(qrels)
 | |
|             print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
 | |
|             self.save_results(qrels, run, texts, dataset, file_path)
 | |
|         if dataset == "trivia_qa":
 | |
|             self.tenant_id = "benchmark_trivia_qa"
 | |
|             self.index_name = search.index_name(self.tenant_id)
 | |
|             qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
 | |
|             run = self._get_retrieval(qrels)
 | |
|             print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
 | |
|             self.save_results(qrels, run, texts, dataset, file_path)
 | |
|         if dataset == "miracl":
 | |
|             for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
 | |
|                          'yo', 'zh']:
 | |
|                 if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
 | |
|                     print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
 | |
|                     continue
 | |
|                 if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
 | |
|                     print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
 | |
|                     continue
 | |
|                 if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
 | |
|                     print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
 | |
|                     continue
 | |
|                 if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
 | |
|                     print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
 | |
|                     continue
 | |
|                 self.tenant_id = "benchmark_miracl_" + lang
 | |
|                 self.index_name = search.index_name(self.tenant_id)
 | |
|                 self.initialized_index = False
 | |
|                 qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
 | |
|                                                  os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
 | |
|                                                  "benchmark_miracl_" + lang)
 | |
|                 run = self._get_retrieval(qrels)
 | |
|                 print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
 | |
|                 self.save_results(qrels, run, texts, dataset, file_path)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     print('*****************RAGFlow Benchmark*****************')
 | |
|     parser = argparse.ArgumentParser(usage="benchmark.py <max_docs> <kb_id> <dataset> <dataset_path> [<miracl_corpus_path>])", description='RAGFlow Benchmark')
 | |
|     parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate')
 | |
|     parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id')
 | |
|     parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl')
 | |
|     parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path')
 | |
|     parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl')
 | |
| 
 | |
|     args = parser.parse_args()
 | |
|     max_docs = args.max_docs
 | |
|     kb_id = args.kb_id
 | |
|     ex = Benchmark(kb_id)
 | |
| 
 | |
|     dataset = args.dataset
 | |
|     dataset_path = args.dataset_path
 | |
| 
 | |
|     if dataset == "ms_marco_v1.1" or dataset == "trivia_qa":
 | |
|         ex(dataset, dataset_path)
 | |
|     elif dataset == "miracl":
 | |
|         if len(args) < 5:
 | |
|             print('Please input the correct parameters!')
 | |
|             exit(1)
 | |
|         miracl_corpus_path = args[4]
 | |
|         ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path)
 | |
|     else:
 | |
|         print("Dataset: ", dataset, "not supported!")
 |