mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 11:49:37 +00:00 
			
		
		
		
	### What problem does this PR solve? ### Type of change - [x] New Feature (non-breaking change which adds functionality)
		
			
				
	
	
		
			235 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
import json
 | 
						|
import os
 | 
						|
from collections import defaultdict
 | 
						|
from api.db import LLMType
 | 
						|
from api.db.services.llm_service import LLMBundle
 | 
						|
from api.db.services.knowledgebase_service import KnowledgebaseService
 | 
						|
from api.settings import retrievaler
 | 
						|
from api.utils import get_uuid
 | 
						|
from rag.nlp import tokenize, search
 | 
						|
from rag.utils.es_conn import ELASTICSEARCH
 | 
						|
from ranx import evaluate
 | 
						|
import pandas as pd
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
 | 
						|
class Benchmark:
 | 
						|
    def __init__(self, kb_id):
 | 
						|
        e, kb = KnowledgebaseService.get_by_id(kb_id)
 | 
						|
        self.similarity_threshold = kb.similarity_threshold
 | 
						|
        self.vector_similarity_weight = kb.vector_similarity_weight
 | 
						|
        self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
 | 
						|
 | 
						|
    def _get_benchmarks(self, query, dataset_idxnm, count=16):
 | 
						|
        req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
 | 
						|
        sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
 | 
						|
        return sres
 | 
						|
 | 
						|
    def _get_retrieval(self, qrels, dataset_idxnm):
 | 
						|
        run = defaultdict(dict)
 | 
						|
        query_list = list(qrels.keys())
 | 
						|
        for query in query_list:
 | 
						|
            sres = self._get_benchmarks(query, dataset_idxnm)
 | 
						|
            sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
 | 
						|
                                           self.vector_similarity_weight)
 | 
						|
            for index, id in enumerate(sres.ids):
 | 
						|
                run[query][id] = sim[index]
 | 
						|
        return run
 | 
						|
 | 
						|
    def embedding(self, docs, batch_size=16):
 | 
						|
        vects = []
 | 
						|
        cnts = [d["content_with_weight"] for d in docs]
 | 
						|
        for i in range(0, len(cnts), batch_size):
 | 
						|
            vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
 | 
						|
            vects.extend(vts.tolist())
 | 
						|
        assert len(docs) == len(vects)
 | 
						|
        for i, d in enumerate(docs):
 | 
						|
            v = vects[i]
 | 
						|
            d["q_%d_vec" % len(v)] = v
 | 
						|
        return docs
 | 
						|
 | 
						|
    def ms_marco_index(self, file_path, index_name):
 | 
						|
        qrels = defaultdict(dict)
 | 
						|
        texts = defaultdict(dict)
 | 
						|
        docs = []
 | 
						|
        filelist = os.listdir(file_path)
 | 
						|
        for dir in filelist:
 | 
						|
            data = pd.read_parquet(os.path.join(file_path, dir))
 | 
						|
            for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
 | 
						|
 | 
						|
                query = data.iloc[i]['query']
 | 
						|
                for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
 | 
						|
                    d = {
 | 
						|
                        "id": get_uuid()
 | 
						|
                    }
 | 
						|
                    tokenize(d, text, "english")
 | 
						|
                    docs.append(d)
 | 
						|
                    texts[d["id"]] = text
 | 
						|
                    qrels[query][d["id"]] = int(rel)
 | 
						|
                if len(docs) >= 32:
 | 
						|
                    docs = self.embedding(docs)
 | 
						|
                    ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 | 
						|
                    docs = []
 | 
						|
 | 
						|
        docs = self.embedding(docs)
 | 
						|
        ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 | 
						|
        return qrels, texts
 | 
						|
 | 
						|
    def trivia_qa_index(self, file_path, index_name):
 | 
						|
        qrels = defaultdict(dict)
 | 
						|
        texts = defaultdict(dict)
 | 
						|
        docs = []
 | 
						|
        filelist = os.listdir(file_path)
 | 
						|
        for dir in filelist:
 | 
						|
            data = pd.read_parquet(os.path.join(file_path, dir))
 | 
						|
            for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
 | 
						|
                query = data.iloc[i]['question']
 | 
						|
                for rel, text in zip(data.iloc[i]["search_results"]['rank'],
 | 
						|
                                     data.iloc[i]["search_results"]['search_context']):
 | 
						|
                    d = {
 | 
						|
                        "id": get_uuid()
 | 
						|
                    }
 | 
						|
                    tokenize(d, text, "english")
 | 
						|
                    docs.append(d)
 | 
						|
                    texts[d["id"]] = text
 | 
						|
                    qrels[query][d["id"]] = int(rel)
 | 
						|
                if len(docs) >= 32:
 | 
						|
                    docs = self.embedding(docs)
 | 
						|
                    ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 | 
						|
                    docs = []
 | 
						|
 | 
						|
        docs = self.embedding(docs)
 | 
						|
        ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 | 
						|
        return qrels, texts
 | 
						|
 | 
						|
    def miracl_index(self, file_path, corpus_path, index_name):
 | 
						|
 | 
						|
        corpus_total = {}
 | 
						|
        for corpus_file in os.listdir(corpus_path):
 | 
						|
            tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
 | 
						|
            for index, i in tmp_data.iterrows():
 | 
						|
                corpus_total[i['docid']] = i['text']
 | 
						|
 | 
						|
        topics_total = {}
 | 
						|
        for topics_file in os.listdir(os.path.join(file_path, 'topics')):
 | 
						|
            if 'test' in topics_file:
 | 
						|
                continue
 | 
						|
            tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
 | 
						|
            for index, i in tmp_data.iterrows():
 | 
						|
                topics_total[i['qid']] = i['query']
 | 
						|
 | 
						|
        qrels = defaultdict(dict)
 | 
						|
        texts = defaultdict(dict)
 | 
						|
        docs = []
 | 
						|
        for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
 | 
						|
            if 'test' in qrels_file:
 | 
						|
                continue
 | 
						|
 | 
						|
            tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
 | 
						|
                                   names=['qid', 'Q0', 'docid', 'relevance'])
 | 
						|
            for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
 | 
						|
                query = topics_total[tmp_data.iloc[i]['qid']]
 | 
						|
                text = corpus_total[tmp_data.iloc[i]['docid']]
 | 
						|
                rel = tmp_data.iloc[i]['relevance']
 | 
						|
                d = {
 | 
						|
                    "id": get_uuid()
 | 
						|
                }
 | 
						|
                tokenize(d, text, 'english')
 | 
						|
                docs.append(d)
 | 
						|
                texts[d["id"]] = text
 | 
						|
                qrels[query][d["id"]] = int(rel)
 | 
						|
                if len(docs) >= 32:
 | 
						|
                    docs = self.embedding(docs)
 | 
						|
                    ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 | 
						|
                    docs = []
 | 
						|
 | 
						|
        docs = self.embedding(docs)
 | 
						|
        ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 | 
						|
 | 
						|
        return qrels, texts
 | 
						|
 | 
						|
    def save_results(self, qrels, run, texts, dataset, file_path):
 | 
						|
        keep_result = []
 | 
						|
        run_keys = list(run.keys())
 | 
						|
        for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
 | 
						|
            key = run_keys[run_i]
 | 
						|
            keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
 | 
						|
                                'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
 | 
						|
        keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
 | 
						|
        with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
 | 
						|
            f.write('## Score For Every Query\n')
 | 
						|
            for keep_result_i in keep_result:
 | 
						|
                f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
 | 
						|
                scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
 | 
						|
                scores = sorted(scores, key=lambda kk: kk[1])
 | 
						|
                for score in scores[:10]:
 | 
						|
                    f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
 | 
						|
        print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
 | 
						|
 | 
						|
    def __call__(self, dataset, file_path, miracl_corpus=''):
 | 
						|
        if dataset == "ms_marco_v1.1":
 | 
						|
            qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
 | 
						|
            run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
 | 
						|
            print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
 | 
						|
            self.save_results(qrels, run, texts, dataset, file_path)
 | 
						|
        if dataset == "trivia_qa":
 | 
						|
            qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
 | 
						|
            run = self._get_retrieval(qrels, "benchmark_trivia_qa")
 | 
						|
            print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
 | 
						|
            self.save_results(qrels, run, texts, dataset, file_path)
 | 
						|
        if dataset == "miracl":
 | 
						|
            for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
 | 
						|
                         'yo', 'zh']:
 | 
						|
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
 | 
						|
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
 | 
						|
                    continue
 | 
						|
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
 | 
						|
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
 | 
						|
                    continue
 | 
						|
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
 | 
						|
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
 | 
						|
                    continue
 | 
						|
                if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
 | 
						|
                    print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
 | 
						|
                    continue
 | 
						|
                qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
 | 
						|
                                                 os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
 | 
						|
                                                 "benchmark_miracl_" + lang)
 | 
						|
                run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
 | 
						|
                print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
 | 
						|
                self.save_results(qrels, run, texts, dataset, file_path)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    print('*****************RAGFlow Benchmark*****************')
 | 
						|
    kb_id = input('Please input kb_id:\n')
 | 
						|
    ex = Benchmark(kb_id)
 | 
						|
    dataset = input(
 | 
						|
        'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
 | 
						|
    if dataset in ['ms_marco_v1.1', 'trivia_qa']:
 | 
						|
        if dataset == "ms_marco_v1.1":
 | 
						|
            print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
 | 
						|
        dataset_path = input('Please input ' + dataset + ' dataset path:\n')
 | 
						|
        ex(dataset, dataset_path)
 | 
						|
    elif dataset == 'miracl':
 | 
						|
        dataset_path = input('Please input ' + dataset + ' dataset path:\n')
 | 
						|
        corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
 | 
						|
        ex(dataset, dataset_path, miracl_corpus=corpus_path)
 | 
						|
    else:
 | 
						|
        print("Dataset: ", dataset, "not supported!")
 |