mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-03 10:26:52 +00:00
### What problem does this PR solve? Update broken agent OpenAI-Compatible completion due to v0.20.0. #9199 Usage example: **Referring the input is important, otherwise, will result in empty output.** <img width="1273" height="711" alt="Image" src="https://github.com/user-attachments/assets/30740be8-f4d6-400d-9fda-d2616f89063f" /> <img width="622" height="247" alt="Image" src="https://github.com/user-attachments/assets/0a2ca57a-9600-4cec-9362-0cafd0ab3aee" /> ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
276 lines
9.7 KiB
Python
276 lines
9.7 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import logging
|
|
import time
|
|
from uuid import uuid4
|
|
from agent.canvas import Canvas
|
|
from api.db import TenantPermission
|
|
from api.db.db_models import DB, CanvasTemplate, User, UserCanvas, API4Conversation
|
|
from api.db.services.api_service import API4ConversationService
|
|
from api.db.services.common_service import CommonService
|
|
from api.utils import get_uuid
|
|
from api.utils.api_utils import get_data_openai
|
|
import tiktoken
|
|
from peewee import fn
|
|
|
|
|
|
class CanvasTemplateService(CommonService):
|
|
model = CanvasTemplate
|
|
|
|
|
|
class UserCanvasService(CommonService):
|
|
model = UserCanvas
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_list(cls, tenant_id,
|
|
page_number, items_per_page, orderby, desc, id, title):
|
|
agents = cls.model.select()
|
|
if id:
|
|
agents = agents.where(cls.model.id == id)
|
|
if title:
|
|
agents = agents.where(cls.model.title == title)
|
|
agents = agents.where(cls.model.user_id == tenant_id)
|
|
if desc:
|
|
agents = agents.order_by(cls.model.getter_by(orderby).desc())
|
|
else:
|
|
agents = agents.order_by(cls.model.getter_by(orderby).asc())
|
|
|
|
agents = agents.paginate(page_number, items_per_page)
|
|
|
|
return list(agents.dicts())
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_by_tenant_id(cls, pid):
|
|
try:
|
|
|
|
fields = [
|
|
cls.model.id,
|
|
cls.model.avatar,
|
|
cls.model.title,
|
|
cls.model.dsl,
|
|
cls.model.description,
|
|
cls.model.permission,
|
|
cls.model.update_time,
|
|
cls.model.user_id,
|
|
cls.model.create_time,
|
|
cls.model.create_date,
|
|
cls.model.update_date,
|
|
User.nickname,
|
|
User.avatar.alias('tenant_avatar'),
|
|
]
|
|
agents = cls.model.select(*fields) \
|
|
.join(User, on=(cls.model.user_id == User.id)) \
|
|
.where(cls.model.id == pid)
|
|
# obj = cls.model.query(id=pid)[0]
|
|
return True, agents.dicts()[0]
|
|
except Exception as e:
|
|
logging.exception(e)
|
|
return False, None
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
|
|
page_number, items_per_page,
|
|
orderby, desc, keywords,
|
|
):
|
|
fields = [
|
|
cls.model.id,
|
|
cls.model.avatar,
|
|
cls.model.title,
|
|
cls.model.dsl,
|
|
cls.model.description,
|
|
cls.model.permission,
|
|
User.nickname,
|
|
User.avatar.alias('tenant_avatar'),
|
|
cls.model.update_time
|
|
]
|
|
if keywords:
|
|
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
|
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
|
TenantPermission.TEAM.value)) | (
|
|
cls.model.user_id == user_id)),
|
|
(fn.LOWER(cls.model.title).contains(keywords.lower()))
|
|
)
|
|
else:
|
|
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
|
|
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
|
|
TenantPermission.TEAM.value)) | (
|
|
cls.model.user_id == user_id))
|
|
)
|
|
if desc:
|
|
agents = agents.order_by(cls.model.getter_by(orderby).desc())
|
|
else:
|
|
agents = agents.order_by(cls.model.getter_by(orderby).asc())
|
|
count = agents.count()
|
|
agents = agents.paginate(page_number, items_per_page)
|
|
return list(agents.dicts()), count
|
|
|
|
|
|
def completion(tenant_id, agent_id, session_id=None, **kwargs):
|
|
query = kwargs.get("query", "")
|
|
files = kwargs.get("files", [])
|
|
inputs = kwargs.get("inputs", {})
|
|
user_id = kwargs.get("user_id", "")
|
|
|
|
if session_id:
|
|
e, conv = API4ConversationService.get_by_id(session_id)
|
|
assert e, "Session not found!"
|
|
if not conv.message:
|
|
conv.message = []
|
|
if not isinstance(conv.dsl, str):
|
|
conv.dsl = json.dumps(conv.dsl, ensure_ascii=False)
|
|
canvas = Canvas(conv.dsl, tenant_id, agent_id)
|
|
else:
|
|
e, cvs = UserCanvasService.get_by_id(agent_id)
|
|
assert e, "Agent not found."
|
|
assert cvs.user_id == tenant_id, "You do not own the agent."
|
|
if not isinstance(cvs.dsl, str):
|
|
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
|
session_id=get_uuid()
|
|
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
|
|
canvas.reset()
|
|
conv = {
|
|
"id": session_id,
|
|
"dialog_id": cvs.id,
|
|
"user_id": user_id,
|
|
"message": [],
|
|
"source": "agent",
|
|
"dsl": cvs.dsl
|
|
}
|
|
API4ConversationService.save(**conv)
|
|
conv = API4Conversation(**conv)
|
|
|
|
message_id = str(uuid4())
|
|
conv.message.append({
|
|
"role": "user",
|
|
"content": query,
|
|
"id": message_id
|
|
})
|
|
txt = ""
|
|
for ans in canvas.run(query=query, files=files, user_id=user_id, inputs=inputs):
|
|
ans["session_id"] = session_id
|
|
if ans["event"] == "message":
|
|
txt += ans["data"]["content"]
|
|
yield "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
|
|
|
|
conv.message.append({"role": "assistant", "content": txt, "created_at": time.time(), "id": message_id})
|
|
conv.reference = canvas.get_reference()
|
|
conv.errors = canvas.error
|
|
conv = conv.to_dict()
|
|
API4ConversationService.append_message(conv["id"], conv)
|
|
|
|
|
|
def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
|
|
tiktokenenc = tiktoken.get_encoding("cl100k_base")
|
|
prompt_tokens = len(tiktokenenc.encode(str(question)))
|
|
user_id = kwargs.get("user_id", "")
|
|
|
|
if stream:
|
|
completion_tokens = 0
|
|
try:
|
|
for ans in completion(
|
|
tenant_id=tenant_id,
|
|
agent_id=agent_id,
|
|
session_id=session_id,
|
|
query=question,
|
|
user_id=user_id,
|
|
**kwargs
|
|
):
|
|
if isinstance(ans, str):
|
|
try:
|
|
ans = json.loads(ans[5:]) # remove "data:"
|
|
except Exception as e:
|
|
logging.exception(f"Agent OpenAI-Compatible completionOpenAI parse answer failed: {e}")
|
|
continue
|
|
|
|
if ans.get("event") != "message":
|
|
continue
|
|
|
|
content_piece = ans["data"]["content"]
|
|
completion_tokens += len(tiktokenenc.encode(content_piece))
|
|
|
|
yield "data: " + json.dumps(
|
|
get_data_openai(
|
|
id=session_id or str(uuid4()),
|
|
model=agent_id,
|
|
content=content_piece,
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
stream=True
|
|
),
|
|
ensure_ascii=False
|
|
) + "\n\n"
|
|
|
|
yield "data: [DONE]\n\n"
|
|
|
|
except Exception as e:
|
|
yield "data: " + json.dumps(
|
|
get_data_openai(
|
|
id=session_id or str(uuid4()),
|
|
model=agent_id,
|
|
content=f"**ERROR**: {str(e)}",
|
|
finish_reason="stop",
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=len(tiktokenenc.encode(f"**ERROR**: {str(e)}")),
|
|
stream=True
|
|
),
|
|
ensure_ascii=False
|
|
) + "\n\n"
|
|
yield "data: [DONE]\n\n"
|
|
|
|
else:
|
|
try:
|
|
all_content = ""
|
|
for ans in completion(
|
|
tenant_id=tenant_id,
|
|
agent_id=agent_id,
|
|
session_id=session_id,
|
|
query=question,
|
|
user_id=user_id,
|
|
**kwargs
|
|
):
|
|
if isinstance(ans, str):
|
|
ans = json.loads(ans[5:])
|
|
if ans.get("event") != "message":
|
|
continue
|
|
all_content += ans["data"]["content"]
|
|
|
|
completion_tokens = len(tiktokenenc.encode(all_content))
|
|
|
|
yield get_data_openai(
|
|
id=session_id or str(uuid4()),
|
|
model=agent_id,
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
content=all_content,
|
|
finish_reason="stop",
|
|
param=None
|
|
)
|
|
|
|
except Exception as e:
|
|
yield get_data_openai(
|
|
id=session_id or str(uuid4()),
|
|
model=agent_id,
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=len(tiktokenenc.encode(f"**ERROR**: {str(e)}")),
|
|
content=f"**ERROR**: {str(e)}",
|
|
finish_reason="stop",
|
|
param=None
|
|
)
|