mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 11:49:37 +00:00 
			
		
		
		
	### What problem does this PR solve? #4367 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
		
			
				
	
	
		
			186 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						||
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 | 
						||
#
 | 
						||
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						||
#  you may not use this file except in compliance with the License.
 | 
						||
#  You may obtain a copy of the License at
 | 
						||
#
 | 
						||
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						||
#
 | 
						||
#  Unless required by applicable law or agreed to in writing, software
 | 
						||
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						||
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						||
#  See the License for the specific language governing permissions and
 | 
						||
#  limitations under the License.
 | 
						||
#
 | 
						||
import logging
 | 
						||
import base64
 | 
						||
import json
 | 
						||
import os
 | 
						||
import time
 | 
						||
import uuid
 | 
						||
from copy import deepcopy
 | 
						||
 | 
						||
from api.db import LLMType, UserTenantRole
 | 
						||
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
 | 
						||
from api.db.services import UserService
 | 
						||
from api.db.services.canvas_service import CanvasTemplateService
 | 
						||
from api.db.services.document_service import DocumentService
 | 
						||
from api.db.services.knowledgebase_service import KnowledgebaseService
 | 
						||
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
 | 
						||
from api.db.services.user_service import TenantService, UserTenantService
 | 
						||
from api import settings
 | 
						||
from api.utils.file_utils import get_project_base_directory
 | 
						||
 | 
						||
 | 
						||
def encode_to_base64(input_string):
 | 
						||
    base64_encoded = base64.b64encode(input_string.encode('utf-8'))
 | 
						||
    return base64_encoded.decode('utf-8')
 | 
						||
 | 
						||
 | 
						||
def init_superuser():
 | 
						||
    user_info = {
 | 
						||
        "id": uuid.uuid1().hex,
 | 
						||
        "password": encode_to_base64("admin"),
 | 
						||
        "nickname": "admin",
 | 
						||
        "is_superuser": True,
 | 
						||
        "email": "admin@ragflow.io",
 | 
						||
        "creator": "system",
 | 
						||
        "status": "1",
 | 
						||
    }
 | 
						||
    tenant = {
 | 
						||
        "id": user_info["id"],
 | 
						||
        "name": user_info["nickname"] + "‘s Kingdom",
 | 
						||
        "llm_id": settings.CHAT_MDL,
 | 
						||
        "embd_id": settings.EMBEDDING_MDL,
 | 
						||
        "asr_id": settings.ASR_MDL,
 | 
						||
        "parser_ids": settings.PARSERS,
 | 
						||
        "img2txt_id": settings.IMAGE2TEXT_MDL
 | 
						||
    }
 | 
						||
    usr_tenant = {
 | 
						||
        "tenant_id": user_info["id"],
 | 
						||
        "user_id": user_info["id"],
 | 
						||
        "invited_by": user_info["id"],
 | 
						||
        "role": UserTenantRole.OWNER
 | 
						||
    }
 | 
						||
    tenant_llm = []
 | 
						||
    for llm in LLMService.query(fid=settings.LLM_FACTORY):
 | 
						||
        tenant_llm.append(
 | 
						||
            {"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name,
 | 
						||
             "model_type": llm.model_type,
 | 
						||
             "api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL})
 | 
						||
 | 
						||
    if not UserService.save(**user_info):
 | 
						||
        logging.error("can't init admin.")
 | 
						||
        return
 | 
						||
    TenantService.insert(**tenant)
 | 
						||
    UserTenantService.insert(**usr_tenant)
 | 
						||
    TenantLLMService.insert_many(tenant_llm)
 | 
						||
    logging.info(
 | 
						||
        "Super user initialized. email: admin@ragflow.io, password: admin. Changing the password after login is strongly recommended.")
 | 
						||
 | 
						||
    chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
 | 
						||
    msg = chat_mdl.chat(system="", history=[
 | 
						||
        {"role": "user", "content": "Hello!"}], gen_conf={})
 | 
						||
    if msg.find("ERROR: ") == 0:
 | 
						||
        logging.error(
 | 
						||
            "'{}' dosen't work. {}".format(
 | 
						||
                tenant["llm_id"],
 | 
						||
                msg))
 | 
						||
    embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
 | 
						||
    v, c = embd_mdl.encode(["Hello!"])
 | 
						||
    if c == 0:
 | 
						||
        logging.error(
 | 
						||
            "'{}' dosen't work!".format(
 | 
						||
                tenant["embd_id"]))
 | 
						||
 | 
						||
 | 
						||
def init_llm_factory():
 | 
						||
    try:
 | 
						||
        LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
 | 
						||
        LLMService.filter_delete([(LLM.fid == "cohere")])
 | 
						||
        LLMFactoriesService.filter_delete([LLMFactories.name == "cohere"])
 | 
						||
    except Exception:
 | 
						||
        pass
 | 
						||
 | 
						||
    factory_llm_infos = json.load(
 | 
						||
        open(
 | 
						||
            os.path.join(get_project_base_directory(), "conf", "llm_factories.json"),
 | 
						||
            "r",
 | 
						||
        )
 | 
						||
    )
 | 
						||
    for factory_llm_info in factory_llm_infos["factory_llm_infos"]:
 | 
						||
        llm_infos = factory_llm_info.pop("llm")
 | 
						||
        try:
 | 
						||
            LLMFactoriesService.save(**factory_llm_info)
 | 
						||
        except Exception:
 | 
						||
            pass
 | 
						||
        LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
 | 
						||
        for llm_info in llm_infos:
 | 
						||
            llm_info["fid"] = factory_llm_info["name"]
 | 
						||
            try:
 | 
						||
                LLMService.save(**llm_info)
 | 
						||
            except Exception:
 | 
						||
                pass
 | 
						||
 | 
						||
    LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
 | 
						||
    LLMService.filter_delete([LLM.fid == "Local"])
 | 
						||
    LLMService.filter_delete([LLM.llm_name == "qwen-vl-max"])
 | 
						||
    LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
 | 
						||
    TenantLLMService.filter_delete([TenantLLM.llm_factory == "Moonshot", TenantLLM.llm_name == "flag-embedding"])
 | 
						||
    LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
 | 
						||
    LLMService.filter_delete([LLMService.model.fid == "QAnything"])
 | 
						||
    TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
 | 
						||
    TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "cohere"], {"llm_factory": "Cohere"})
 | 
						||
    TenantService.filter_update([1 == 1], {
 | 
						||
        "parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email,tag:Tag"})
 | 
						||
    ## insert openai two embedding models to the current openai user.
 | 
						||
    # print("Start to insert 2 OpenAI embedding models...")
 | 
						||
    tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
 | 
						||
    for tid in tenant_ids:
 | 
						||
        for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
 | 
						||
            row = row.to_dict()
 | 
						||
            row["model_type"] = LLMType.EMBEDDING.value
 | 
						||
            row["llm_name"] = "text-embedding-3-small"
 | 
						||
            row["used_tokens"] = 0
 | 
						||
            try:
 | 
						||
                TenantLLMService.save(**row)
 | 
						||
                row = deepcopy(row)
 | 
						||
                row["llm_name"] = "text-embedding-3-large"
 | 
						||
                TenantLLMService.save(**row)
 | 
						||
            except Exception:
 | 
						||
                pass
 | 
						||
            break
 | 
						||
    for kb_id in KnowledgebaseService.get_all_ids():
 | 
						||
        KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
 | 
						||
 | 
						||
 | 
						||
 | 
						||
def add_graph_templates():
 | 
						||
    dir = os.path.join(get_project_base_directory(), "agent", "templates")
 | 
						||
    for fnm in os.listdir(dir):
 | 
						||
        try:
 | 
						||
            cnvs = json.load(open(os.path.join(dir, fnm), "r"))
 | 
						||
            try:
 | 
						||
                CanvasTemplateService.save(**cnvs)
 | 
						||
            except Exception:
 | 
						||
                CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
 | 
						||
        except Exception:
 | 
						||
            logging.exception("Add graph templates error: ")
 | 
						||
 | 
						||
 | 
						||
def init_web_data():
 | 
						||
    start_time = time.time()
 | 
						||
 | 
						||
    init_llm_factory()
 | 
						||
    # if not UserService.get_all().count():
 | 
						||
    #    init_superuser()
 | 
						||
 | 
						||
    add_graph_templates()
 | 
						||
    logging.info("init web data success:{}".format(time.time() - start_time))
 | 
						||
 | 
						||
 | 
						||
if __name__ == '__main__':
 | 
						||
    init_web_db()
 | 
						||
    init_web_data()
 |