mirror of
				https://github.com/infiniflow/ragflow.git
				synced 2025-11-04 03:39:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			631 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			631 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
#  you may not use this file except in compliance with the License.
 | 
						|
#  You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
#  Unless required by applicable law or agreed to in writing, software
 | 
						|
#  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
#  See the License for the specific language governing permissions and
 | 
						|
#  limitations under the License.
 | 
						|
#
 | 
						|
 | 
						|
import copy
 | 
						|
import time
 | 
						|
import os
 | 
						|
 | 
						|
from huggingface_hub import snapshot_download
 | 
						|
 | 
						|
from api.utils.file_utils import get_project_base_directory
 | 
						|
from .operators import *
 | 
						|
import numpy as np
 | 
						|
import onnxruntime as ort
 | 
						|
 | 
						|
from .postprocess import build_post_process
 | 
						|
from rag.settings import cron_logger
 | 
						|
 | 
						|
 | 
						|
def transform(data, ops=None):
 | 
						|
    """ transform """
 | 
						|
    if ops is None:
 | 
						|
        ops = []
 | 
						|
    for op in ops:
 | 
						|
        data = op(data)
 | 
						|
        if data is None:
 | 
						|
            return None
 | 
						|
    return data
 | 
						|
 | 
						|
 | 
						|
def create_operators(op_param_list, global_config=None):
 | 
						|
    """
 | 
						|
    create operators based on the config
 | 
						|
 | 
						|
    Args:
 | 
						|
        params(list): a dict list, used to create some operators
 | 
						|
    """
 | 
						|
    assert isinstance(
 | 
						|
        op_param_list, list), ('operator config should be a list')
 | 
						|
    ops = []
 | 
						|
    for operator in op_param_list:
 | 
						|
        assert isinstance(operator,
 | 
						|
                          dict) and len(operator) == 1, "yaml format error"
 | 
						|
        op_name = list(operator)[0]
 | 
						|
        param = {} if operator[op_name] is None else operator[op_name]
 | 
						|
        if global_config is not None:
 | 
						|
            param.update(global_config)
 | 
						|
        op = eval(op_name)(**param)
 | 
						|
        ops.append(op)
 | 
						|
    return ops
 | 
						|
 | 
						|
 | 
						|
def load_model(model_dir, nm):
 | 
						|
    model_file_path = os.path.join(model_dir, nm + ".onnx")
 | 
						|
    if not os.path.exists(model_file_path):
 | 
						|
        raise ValueError("not find model file path {}".format(
 | 
						|
            model_file_path))
 | 
						|
 | 
						|
    options = ort.SessionOptions()
 | 
						|
    options.enable_cpu_mem_arena = False
 | 
						|
    options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
 | 
						|
    options.intra_op_num_threads = 2
 | 
						|
    options.inter_op_num_threads = 2
 | 
						|
    if False and ort.get_device() == "GPU":
 | 
						|
        sess = ort.InferenceSession(
 | 
						|
            model_file_path,
 | 
						|
            options=options,
 | 
						|
            providers=['CUDAExecutionProvider'])
 | 
						|
    else:
 | 
						|
        sess = ort.InferenceSession(
 | 
						|
            model_file_path,
 | 
						|
            options=options,
 | 
						|
            providers=['CPUExecutionProvider'])
 | 
						|
    return sess, sess.get_inputs()[0]
 | 
						|
 | 
						|
 | 
						|
class TextRecognizer(object):
 | 
						|
    def __init__(self, model_dir):
 | 
						|
        self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")]
 | 
						|
        self.rec_batch_num = 16
 | 
						|
        postprocess_params = {
 | 
						|
            'name': 'CTCLabelDecode',
 | 
						|
            "character_dict_path": os.path.join(model_dir, "ocr.res"),
 | 
						|
            "use_space_char": True
 | 
						|
        }
 | 
						|
        self.postprocess_op = build_post_process(postprocess_params)
 | 
						|
        self.predictor, self.input_tensor = load_model(model_dir, 'rec')
 | 
						|
 | 
						|
    def resize_norm_img(self, img, max_wh_ratio):
 | 
						|
        imgC, imgH, imgW = self.rec_image_shape
 | 
						|
 | 
						|
        assert imgC == img.shape[2]
 | 
						|
        imgW = int((imgH * max_wh_ratio))
 | 
						|
        w = self.input_tensor.shape[3:][0]
 | 
						|
        if isinstance(w, str):
 | 
						|
            pass
 | 
						|
        elif w is not None and w > 0:
 | 
						|
            imgW = w
 | 
						|
        h, w = img.shape[:2]
 | 
						|
        ratio = w / float(h)
 | 
						|
        if math.ceil(imgH * ratio) > imgW:
 | 
						|
            resized_w = imgW
 | 
						|
        else:
 | 
						|
            resized_w = int(math.ceil(imgH * ratio))
 | 
						|
 | 
						|
        resized_image = cv2.resize(img, (resized_w, imgH))
 | 
						|
        resized_image = resized_image.astype('float32')
 | 
						|
        resized_image = resized_image.transpose((2, 0, 1)) / 255
 | 
						|
        resized_image -= 0.5
 | 
						|
        resized_image /= 0.5
 | 
						|
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
 | 
						|
        padding_im[:, :, 0:resized_w] = resized_image
 | 
						|
        return padding_im
 | 
						|
 | 
						|
    def resize_norm_img_vl(self, img, image_shape):
 | 
						|
 | 
						|
        imgC, imgH, imgW = image_shape
 | 
						|
        img = img[:, :, ::-1]  # bgr2rgb
 | 
						|
        resized_image = cv2.resize(
 | 
						|
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
 | 
						|
        resized_image = resized_image.astype('float32')
 | 
						|
        resized_image = resized_image.transpose((2, 0, 1)) / 255
 | 
						|
        return resized_image
 | 
						|
 | 
						|
    def resize_norm_img_srn(self, img, image_shape):
 | 
						|
        imgC, imgH, imgW = image_shape
 | 
						|
 | 
						|
        img_black = np.zeros((imgH, imgW))
 | 
						|
        im_hei = img.shape[0]
 | 
						|
        im_wid = img.shape[1]
 | 
						|
 | 
						|
        if im_wid <= im_hei * 1:
 | 
						|
            img_new = cv2.resize(img, (imgH * 1, imgH))
 | 
						|
        elif im_wid <= im_hei * 2:
 | 
						|
            img_new = cv2.resize(img, (imgH * 2, imgH))
 | 
						|
        elif im_wid <= im_hei * 3:
 | 
						|
            img_new = cv2.resize(img, (imgH * 3, imgH))
 | 
						|
        else:
 | 
						|
            img_new = cv2.resize(img, (imgW, imgH))
 | 
						|
 | 
						|
        img_np = np.asarray(img_new)
 | 
						|
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
 | 
						|
        img_black[:, 0:img_np.shape[1]] = img_np
 | 
						|
        img_black = img_black[:, :, np.newaxis]
 | 
						|
 | 
						|
        row, col, c = img_black.shape
 | 
						|
        c = 1
 | 
						|
 | 
						|
        return np.reshape(img_black, (c, row, col)).astype(np.float32)
 | 
						|
 | 
						|
    def srn_other_inputs(self, image_shape, num_heads, max_text_length):
 | 
						|
 | 
						|
        imgC, imgH, imgW = image_shape
 | 
						|
        feature_dim = int((imgH / 8) * (imgW / 8))
 | 
						|
 | 
						|
        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
 | 
						|
            (feature_dim, 1)).astype('int64')
 | 
						|
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
 | 
						|
            (max_text_length, 1)).astype('int64')
 | 
						|
 | 
						|
        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
 | 
						|
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
 | 
						|
            [-1, 1, max_text_length, max_text_length])
 | 
						|
        gsrm_slf_attn_bias1 = np.tile(
 | 
						|
            gsrm_slf_attn_bias1,
 | 
						|
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]
 | 
						|
 | 
						|
        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
 | 
						|
            [-1, 1, max_text_length, max_text_length])
 | 
						|
        gsrm_slf_attn_bias2 = np.tile(
 | 
						|
            gsrm_slf_attn_bias2,
 | 
						|
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]
 | 
						|
 | 
						|
        encoder_word_pos = encoder_word_pos[np.newaxis, :]
 | 
						|
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
 | 
						|
 | 
						|
        return [
 | 
						|
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
 | 
						|
            gsrm_slf_attn_bias2
 | 
						|
        ]
 | 
						|
 | 
						|
    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
 | 
						|
        norm_img = self.resize_norm_img_srn(img, image_shape)
 | 
						|
        norm_img = norm_img[np.newaxis, :]
 | 
						|
 | 
						|
        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
 | 
						|
            self.srn_other_inputs(image_shape, num_heads, max_text_length)
 | 
						|
 | 
						|
        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
 | 
						|
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
 | 
						|
        encoder_word_pos = encoder_word_pos.astype(np.int64)
 | 
						|
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)
 | 
						|
 | 
						|
        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
 | 
						|
                gsrm_slf_attn_bias2)
 | 
						|
 | 
						|
    def resize_norm_img_sar(self, img, image_shape,
 | 
						|
                            width_downsample_ratio=0.25):
 | 
						|
        imgC, imgH, imgW_min, imgW_max = image_shape
 | 
						|
        h = img.shape[0]
 | 
						|
        w = img.shape[1]
 | 
						|
        valid_ratio = 1.0
 | 
						|
        # make sure new_width is an integral multiple of width_divisor.
 | 
						|
        width_divisor = int(1 / width_downsample_ratio)
 | 
						|
        # resize
 | 
						|
        ratio = w / float(h)
 | 
						|
        resize_w = math.ceil(imgH * ratio)
 | 
						|
        if resize_w % width_divisor != 0:
 | 
						|
            resize_w = round(resize_w / width_divisor) * width_divisor
 | 
						|
        if imgW_min is not None:
 | 
						|
            resize_w = max(imgW_min, resize_w)
 | 
						|
        if imgW_max is not None:
 | 
						|
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
 | 
						|
            resize_w = min(imgW_max, resize_w)
 | 
						|
        resized_image = cv2.resize(img, (resize_w, imgH))
 | 
						|
        resized_image = resized_image.astype('float32')
 | 
						|
        # norm
 | 
						|
        if image_shape[0] == 1:
 | 
						|
            resized_image = resized_image / 255
 | 
						|
            resized_image = resized_image[np.newaxis, :]
 | 
						|
        else:
 | 
						|
            resized_image = resized_image.transpose((2, 0, 1)) / 255
 | 
						|
        resized_image -= 0.5
 | 
						|
        resized_image /= 0.5
 | 
						|
        resize_shape = resized_image.shape
 | 
						|
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
 | 
						|
        padding_im[:, :, 0:resize_w] = resized_image
 | 
						|
        pad_shape = padding_im.shape
 | 
						|
 | 
						|
        return padding_im, resize_shape, pad_shape, valid_ratio
 | 
						|
 | 
						|
    def resize_norm_img_spin(self, img):
 | 
						|
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 | 
						|
        # return padding_im
 | 
						|
        img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
 | 
						|
        img = np.array(img, np.float32)
 | 
						|
        img = np.expand_dims(img, -1)
 | 
						|
        img = img.transpose((2, 0, 1))
 | 
						|
        mean = [127.5]
 | 
						|
        std = [127.5]
 | 
						|
        mean = np.array(mean, dtype=np.float32)
 | 
						|
        std = np.array(std, dtype=np.float32)
 | 
						|
        mean = np.float32(mean.reshape(1, -1))
 | 
						|
        stdinv = 1 / np.float32(std.reshape(1, -1))
 | 
						|
        img -= mean
 | 
						|
        img *= stdinv
 | 
						|
        return img
 | 
						|
 | 
						|
    def resize_norm_img_svtr(self, img, image_shape):
 | 
						|
 | 
						|
        imgC, imgH, imgW = image_shape
 | 
						|
        resized_image = cv2.resize(
 | 
						|
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
 | 
						|
        resized_image = resized_image.astype('float32')
 | 
						|
        resized_image = resized_image.transpose((2, 0, 1)) / 255
 | 
						|
        resized_image -= 0.5
 | 
						|
        resized_image /= 0.5
 | 
						|
        return resized_image
 | 
						|
 | 
						|
    def resize_norm_img_abinet(self, img, image_shape):
 | 
						|
 | 
						|
        imgC, imgH, imgW = image_shape
 | 
						|
 | 
						|
        resized_image = cv2.resize(
 | 
						|
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
 | 
						|
        resized_image = resized_image.astype('float32')
 | 
						|
        resized_image = resized_image / 255.
 | 
						|
 | 
						|
        mean = np.array([0.485, 0.456, 0.406])
 | 
						|
        std = np.array([0.229, 0.224, 0.225])
 | 
						|
        resized_image = (
 | 
						|
            resized_image - mean[None, None, ...]) / std[None, None, ...]
 | 
						|
        resized_image = resized_image.transpose((2, 0, 1))
 | 
						|
        resized_image = resized_image.astype('float32')
 | 
						|
 | 
						|
        return resized_image
 | 
						|
 | 
						|
    def norm_img_can(self, img, image_shape):
 | 
						|
 | 
						|
        img = cv2.cvtColor(
 | 
						|
            img, cv2.COLOR_BGR2GRAY)  # CAN only predict gray scale image
 | 
						|
 | 
						|
        if self.rec_image_shape[0] == 1:
 | 
						|
            h, w = img.shape
 | 
						|
            _, imgH, imgW = self.rec_image_shape
 | 
						|
            if h < imgH or w < imgW:
 | 
						|
                padding_h = max(imgH - h, 0)
 | 
						|
                padding_w = max(imgW - w, 0)
 | 
						|
                img_padded = np.pad(img, ((0, padding_h), (0, padding_w)),
 | 
						|
                                    'constant',
 | 
						|
                                    constant_values=(255))
 | 
						|
                img = img_padded
 | 
						|
 | 
						|
        img = np.expand_dims(img, 0) / 255.0  # h,w,c -> c,h,w
 | 
						|
        img = img.astype('float32')
 | 
						|
 | 
						|
        return img
 | 
						|
 | 
						|
    def __call__(self, img_list):
 | 
						|
        img_num = len(img_list)
 | 
						|
        # Calculate the aspect ratio of all text bars
 | 
						|
        width_list = []
 | 
						|
        for img in img_list:
 | 
						|
            width_list.append(img.shape[1] / float(img.shape[0]))
 | 
						|
        # Sorting can speed up the recognition process
 | 
						|
        indices = np.argsort(np.array(width_list))
 | 
						|
        rec_res = [['', 0.0]] * img_num
 | 
						|
        batch_num = self.rec_batch_num
 | 
						|
        st = time.time()
 | 
						|
 | 
						|
        for beg_img_no in range(0, img_num, batch_num):
 | 
						|
            end_img_no = min(img_num, beg_img_no + batch_num)
 | 
						|
            norm_img_batch = []
 | 
						|
            imgC, imgH, imgW = self.rec_image_shape[:3]
 | 
						|
            max_wh_ratio = imgW / imgH
 | 
						|
            # max_wh_ratio = 0
 | 
						|
            for ino in range(beg_img_no, end_img_no):
 | 
						|
                h, w = img_list[indices[ino]].shape[0:2]
 | 
						|
                wh_ratio = w * 1.0 / h
 | 
						|
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
 | 
						|
            for ino in range(beg_img_no, end_img_no):
 | 
						|
                norm_img = self.resize_norm_img(img_list[indices[ino]],
 | 
						|
                                                max_wh_ratio)
 | 
						|
                norm_img = norm_img[np.newaxis, :]
 | 
						|
                norm_img_batch.append(norm_img)
 | 
						|
            norm_img_batch = np.concatenate(norm_img_batch)
 | 
						|
            norm_img_batch = norm_img_batch.copy()
 | 
						|
 | 
						|
            input_dict = {}
 | 
						|
            input_dict[self.input_tensor.name] = norm_img_batch
 | 
						|
            for i in range(100000):
 | 
						|
                try:
 | 
						|
                    outputs = self.predictor.run(None, input_dict)
 | 
						|
                    break
 | 
						|
                except Exception as e:
 | 
						|
                    if i >= 3:
 | 
						|
                        raise e
 | 
						|
                    time.sleep(5)
 | 
						|
            preds = outputs[0]
 | 
						|
            rec_result = self.postprocess_op(preds)
 | 
						|
            for rno in range(len(rec_result)):
 | 
						|
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
 | 
						|
 | 
						|
        return rec_res, time.time() - st
 | 
						|
 | 
						|
 | 
						|
class TextDetector(object):
 | 
						|
    def __init__(self, model_dir):
 | 
						|
        pre_process_list = [{
 | 
						|
            'DetResizeForTest': {
 | 
						|
                'limit_side_len': 960,
 | 
						|
                'limit_type': "max",
 | 
						|
            }
 | 
						|
        }, {
 | 
						|
            'NormalizeImage': {
 | 
						|
                'std': [0.229, 0.224, 0.225],
 | 
						|
                'mean': [0.485, 0.456, 0.406],
 | 
						|
                'scale': '1./255.',
 | 
						|
                'order': 'hwc'
 | 
						|
            }
 | 
						|
        }, {
 | 
						|
            'ToCHWImage': None
 | 
						|
        }, {
 | 
						|
            'KeepKeys': {
 | 
						|
                'keep_keys': ['image', 'shape']
 | 
						|
            }
 | 
						|
        }]
 | 
						|
        postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000,
 | 
						|
                              "unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
 | 
						|
 | 
						|
        self.postprocess_op = build_post_process(postprocess_params)
 | 
						|
        self.predictor, self.input_tensor = load_model(model_dir, 'det')
 | 
						|
 | 
						|
        img_h, img_w = self.input_tensor.shape[2:]
 | 
						|
        if isinstance(img_h, str) or isinstance(img_w, str):
 | 
						|
            pass
 | 
						|
        elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
 | 
						|
            pre_process_list[0] = {
 | 
						|
                'DetResizeForTest': {
 | 
						|
                    'image_shape': [img_h, img_w]
 | 
						|
                }
 | 
						|
            }
 | 
						|
        self.preprocess_op = create_operators(pre_process_list)
 | 
						|
 | 
						|
    def order_points_clockwise(self, pts):
 | 
						|
        rect = np.zeros((4, 2), dtype="float32")
 | 
						|
        s = pts.sum(axis=1)
 | 
						|
        rect[0] = pts[np.argmin(s)]
 | 
						|
        rect[2] = pts[np.argmax(s)]
 | 
						|
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
 | 
						|
        diff = np.diff(np.array(tmp), axis=1)
 | 
						|
        rect[1] = tmp[np.argmin(diff)]
 | 
						|
        rect[3] = tmp[np.argmax(diff)]
 | 
						|
        return rect
 | 
						|
 | 
						|
    def clip_det_res(self, points, img_height, img_width):
 | 
						|
        for pno in range(points.shape[0]):
 | 
						|
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
 | 
						|
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
 | 
						|
        return points
 | 
						|
 | 
						|
    def filter_tag_det_res(self, dt_boxes, image_shape):
 | 
						|
        img_height, img_width = image_shape[0:2]
 | 
						|
        dt_boxes_new = []
 | 
						|
        for box in dt_boxes:
 | 
						|
            if isinstance(box, list):
 | 
						|
                box = np.array(box)
 | 
						|
            box = self.order_points_clockwise(box)
 | 
						|
            box = self.clip_det_res(box, img_height, img_width)
 | 
						|
            rect_width = int(np.linalg.norm(box[0] - box[1]))
 | 
						|
            rect_height = int(np.linalg.norm(box[0] - box[3]))
 | 
						|
            if rect_width <= 3 or rect_height <= 3:
 | 
						|
                continue
 | 
						|
            dt_boxes_new.append(box)
 | 
						|
        dt_boxes = np.array(dt_boxes_new)
 | 
						|
        return dt_boxes
 | 
						|
 | 
						|
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
 | 
						|
        img_height, img_width = image_shape[0:2]
 | 
						|
        dt_boxes_new = []
 | 
						|
        for box in dt_boxes:
 | 
						|
            if isinstance(box, list):
 | 
						|
                box = np.array(box)
 | 
						|
            box = self.clip_det_res(box, img_height, img_width)
 | 
						|
            dt_boxes_new.append(box)
 | 
						|
        dt_boxes = np.array(dt_boxes_new)
 | 
						|
        return dt_boxes
 | 
						|
 | 
						|
    def __call__(self, img):
 | 
						|
        ori_im = img.copy()
 | 
						|
        data = {'image': img}
 | 
						|
 | 
						|
        st = time.time()
 | 
						|
        data = transform(data, self.preprocess_op)
 | 
						|
        img, shape_list = data
 | 
						|
        if img is None:
 | 
						|
            return None, 0
 | 
						|
        img = np.expand_dims(img, axis=0)
 | 
						|
        shape_list = np.expand_dims(shape_list, axis=0)
 | 
						|
        img = img.copy()
 | 
						|
        input_dict = {}
 | 
						|
        input_dict[self.input_tensor.name] = img
 | 
						|
        for i in range(100000):
 | 
						|
            try:
 | 
						|
                outputs = self.predictor.run(None, input_dict)
 | 
						|
                break
 | 
						|
            except Exception as e:
 | 
						|
                if i >= 3:
 | 
						|
                    raise e
 | 
						|
                time.sleep(5)
 | 
						|
 | 
						|
        post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
 | 
						|
        dt_boxes = post_result[0]['points']
 | 
						|
        dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
 | 
						|
 | 
						|
        return dt_boxes, time.time() - st
 | 
						|
 | 
						|
 | 
						|
class OCR(object):
 | 
						|
    def __init__(self, model_dir=None):
 | 
						|
        """
 | 
						|
        If you have trouble downloading HuggingFace models, -_^ this might help!!
 | 
						|
 | 
						|
        For Linux:
 | 
						|
        export HF_ENDPOINT=https://hf-mirror.com
 | 
						|
 | 
						|
        For Windows:
 | 
						|
        Good luck
 | 
						|
        ^_-
 | 
						|
 | 
						|
        """
 | 
						|
        if not model_dir:
 | 
						|
            try:
 | 
						|
                model_dir = os.path.join(
 | 
						|
                        get_project_base_directory(),
 | 
						|
                        "rag/res/deepdoc")
 | 
						|
                self.text_detector = TextDetector(model_dir)
 | 
						|
                self.text_recognizer = TextRecognizer(model_dir)
 | 
						|
            except Exception as e:
 | 
						|
                model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
 | 
						|
                                              local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
 | 
						|
                                              local_dir_use_symlinks=False)
 | 
						|
                self.text_detector = TextDetector(model_dir)
 | 
						|
                self.text_recognizer = TextRecognizer(model_dir)
 | 
						|
 | 
						|
        self.drop_score = 0.5
 | 
						|
        self.crop_image_res_index = 0
 | 
						|
 | 
						|
    def get_rotate_crop_image(self, img, points):
 | 
						|
        '''
 | 
						|
        img_height, img_width = img.shape[0:2]
 | 
						|
        left = int(np.min(points[:, 0]))
 | 
						|
        right = int(np.max(points[:, 0]))
 | 
						|
        top = int(np.min(points[:, 1]))
 | 
						|
        bottom = int(np.max(points[:, 1]))
 | 
						|
        img_crop = img[top:bottom, left:right, :].copy()
 | 
						|
        points[:, 0] = points[:, 0] - left
 | 
						|
        points[:, 1] = points[:, 1] - top
 | 
						|
        '''
 | 
						|
        assert len(points) == 4, "shape of points must be 4*2"
 | 
						|
        img_crop_width = int(
 | 
						|
            max(
 | 
						|
                np.linalg.norm(points[0] - points[1]),
 | 
						|
                np.linalg.norm(points[2] - points[3])))
 | 
						|
        img_crop_height = int(
 | 
						|
            max(
 | 
						|
                np.linalg.norm(points[0] - points[3]),
 | 
						|
                np.linalg.norm(points[1] - points[2])))
 | 
						|
        pts_std = np.float32([[0, 0], [img_crop_width, 0],
 | 
						|
                              [img_crop_width, img_crop_height],
 | 
						|
                              [0, img_crop_height]])
 | 
						|
        M = cv2.getPerspectiveTransform(points, pts_std)
 | 
						|
        dst_img = cv2.warpPerspective(
 | 
						|
            img,
 | 
						|
            M, (img_crop_width, img_crop_height),
 | 
						|
            borderMode=cv2.BORDER_REPLICATE,
 | 
						|
            flags=cv2.INTER_CUBIC)
 | 
						|
        dst_img_height, dst_img_width = dst_img.shape[0:2]
 | 
						|
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
 | 
						|
            dst_img = np.rot90(dst_img)
 | 
						|
        return dst_img
 | 
						|
 | 
						|
    def sorted_boxes(self, dt_boxes):
 | 
						|
        """
 | 
						|
        Sort text boxes in order from top to bottom, left to right
 | 
						|
        args:
 | 
						|
            dt_boxes(array):detected text boxes with shape [4, 2]
 | 
						|
        return:
 | 
						|
            sorted boxes(array) with shape [4, 2]
 | 
						|
        """
 | 
						|
        num_boxes = dt_boxes.shape[0]
 | 
						|
        sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
 | 
						|
        _boxes = list(sorted_boxes)
 | 
						|
 | 
						|
        for i in range(num_boxes - 1):
 | 
						|
            for j in range(i, -1, -1):
 | 
						|
                if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
 | 
						|
                        (_boxes[j + 1][0][0] < _boxes[j][0][0]):
 | 
						|
                    tmp = _boxes[j]
 | 
						|
                    _boxes[j] = _boxes[j + 1]
 | 
						|
                    _boxes[j + 1] = tmp
 | 
						|
                else:
 | 
						|
                    break
 | 
						|
        return _boxes
 | 
						|
 | 
						|
    def detect(self, img):
 | 
						|
        time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
 | 
						|
 | 
						|
        if img is None:
 | 
						|
            return None, None, time_dict
 | 
						|
 | 
						|
        start = time.time()
 | 
						|
        dt_boxes, elapse = self.text_detector(img)
 | 
						|
        time_dict['det'] = elapse
 | 
						|
 | 
						|
        if dt_boxes is None:
 | 
						|
            end = time.time()
 | 
						|
            time_dict['all'] = end - start
 | 
						|
            return None, None, time_dict
 | 
						|
        else:
 | 
						|
            cron_logger.debug("dt_boxes num : {}, elapsed : {}".format(
 | 
						|
                len(dt_boxes), elapse))
 | 
						|
 | 
						|
        return zip(self.sorted_boxes(dt_boxes), [
 | 
						|
                   ("", 0) for _ in range(len(dt_boxes))])
 | 
						|
 | 
						|
    def recognize(self, ori_im, box):
 | 
						|
        img_crop = self.get_rotate_crop_image(ori_im, box)
 | 
						|
 | 
						|
        rec_res, elapse = self.text_recognizer([img_crop])
 | 
						|
        text, score = rec_res[0]
 | 
						|
        if score < self.drop_score:
 | 
						|
            return ""
 | 
						|
        return text
 | 
						|
 | 
						|
    def __call__(self, img, cls=True):
 | 
						|
        time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
 | 
						|
 | 
						|
        if img is None:
 | 
						|
            return None, None, time_dict
 | 
						|
 | 
						|
        start = time.time()
 | 
						|
        ori_im = img.copy()
 | 
						|
        dt_boxes, elapse = self.text_detector(img)
 | 
						|
        time_dict['det'] = elapse
 | 
						|
 | 
						|
        if dt_boxes is None:
 | 
						|
            end = time.time()
 | 
						|
            time_dict['all'] = end - start
 | 
						|
            return None, None, time_dict
 | 
						|
        else:
 | 
						|
            cron_logger.debug("dt_boxes num : {}, elapsed : {}".format(
 | 
						|
                len(dt_boxes), elapse))
 | 
						|
        img_crop_list = []
 | 
						|
 | 
						|
        dt_boxes = self.sorted_boxes(dt_boxes)
 | 
						|
 | 
						|
        for bno in range(len(dt_boxes)):
 | 
						|
            tmp_box = copy.deepcopy(dt_boxes[bno])
 | 
						|
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
 | 
						|
            img_crop_list.append(img_crop)
 | 
						|
 | 
						|
        rec_res, elapse = self.text_recognizer(img_crop_list)
 | 
						|
 | 
						|
        time_dict['rec'] = elapse
 | 
						|
        cron_logger.debug("rec_res num  : {}, elapsed : {}".format(
 | 
						|
            len(rec_res), elapse))
 | 
						|
 | 
						|
        filter_boxes, filter_rec_res = [], []
 | 
						|
        for box, rec_result in zip(dt_boxes, rec_res):
 | 
						|
            text, score = rec_result
 | 
						|
            if score >= self.drop_score:
 | 
						|
                filter_boxes.append(box)
 | 
						|
                filter_rec_res.append(rec_result)
 | 
						|
        end = time.time()
 | 
						|
        time_dict['all'] = end - start
 | 
						|
 | 
						|
        # for bno in range(len(img_crop_list)):
 | 
						|
        #    print(f"{bno}, {rec_res[bno]}")
 | 
						|
 | 
						|
        return list(zip([a.tolist() for a in filter_boxes], filter_rec_res))
 |