| 
									
										
										
										
											2022-09-30 15:28:37 -05:00
										 |  |  | import os.path | 
					
						
							|  |  |  | import sys | 
					
						
							|  |  |  | import traceback | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import PIL.Image | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | from basicsr.utils.download_util import load_file_from_url | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import modules.upscaler | 
					
						
							| 
									
										
										
										
											2022-10-04 04:24:35 -04:00
										 |  |  | from modules import devices, modelloader | 
					
						
							| 
									
										
										
										
											2022-09-30 15:28:37 -05:00
										 |  |  | from modules.paths import models_path | 
					
						
							|  |  |  | from modules.scunet_model_arch import SCUNet as net | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class UpscalerScuNET(modules.upscaler.Upscaler): | 
					
						
							|  |  |  |     def __init__(self, dirname): | 
					
						
							|  |  |  |         self.name = "ScuNET" | 
					
						
							|  |  |  |         self.model_path = os.path.join(models_path, self.name) | 
					
						
							|  |  |  |         self.model_name = "ScuNET GAN" | 
					
						
							|  |  |  |         self.model_name2 = "ScuNET PSNR" | 
					
						
							|  |  |  |         self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth" | 
					
						
							|  |  |  |         self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth" | 
					
						
							|  |  |  |         self.user_path = dirname | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         model_paths = self.find_models(ext_filter=[".pth"]) | 
					
						
							|  |  |  |         scalers = [] | 
					
						
							|  |  |  |         add_model2 = True | 
					
						
							|  |  |  |         for file in model_paths: | 
					
						
							|  |  |  |             if "http" in file: | 
					
						
							|  |  |  |                 name = self.model_name | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 name = modelloader.friendly_name(file) | 
					
						
							|  |  |  |             if name == self.model_name2 or file == self.model_url2: | 
					
						
							|  |  |  |                 add_model2 = False | 
					
						
							|  |  |  |             try: | 
					
						
							|  |  |  |                 scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) | 
					
						
							|  |  |  |                 scalers.append(scaler_data) | 
					
						
							|  |  |  |             except Exception: | 
					
						
							|  |  |  |                 print(f"Error loading ScuNET model: {file}", file=sys.stderr) | 
					
						
							|  |  |  |                 print(traceback.format_exc(), file=sys.stderr) | 
					
						
							|  |  |  |         if add_model2: | 
					
						
							|  |  |  |             scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self) | 
					
						
							|  |  |  |             scalers.append(scaler_data2) | 
					
						
							|  |  |  |         self.scalers = scalers | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_upscale(self, img: PIL.Image, selected_file): | 
					
						
							|  |  |  |         torch.cuda.empty_cache() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         model = self.load_model(selected_file) | 
					
						
							|  |  |  |         if model is None: | 
					
						
							|  |  |  |             return img | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-04 04:24:35 -04:00
										 |  |  |         device = devices.device_scunet | 
					
						
							| 
									
										
										
										
											2022-09-30 15:28:37 -05:00
										 |  |  |         img = np.array(img) | 
					
						
							|  |  |  |         img = img[:, :, ::-1] | 
					
						
							|  |  |  |         img = np.moveaxis(img, 2, 0) / 255 | 
					
						
							|  |  |  |         img = torch.from_numpy(img).float() | 
					
						
							| 
									
										
										
										
											2022-10-04 04:24:35 -04:00
										 |  |  |         img = img.unsqueeze(0).to(device) | 
					
						
							| 
									
										
										
										
											2022-09-30 15:28:37 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |         img = img.to(device) | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             output = model(img) | 
					
						
							|  |  |  |         output = output.squeeze().float().cpu().clamp_(0, 1).numpy() | 
					
						
							|  |  |  |         output = 255. * np.moveaxis(output, 0, 2) | 
					
						
							|  |  |  |         output = output.astype(np.uint8) | 
					
						
							|  |  |  |         output = output[:, :, ::-1] | 
					
						
							|  |  |  |         torch.cuda.empty_cache() | 
					
						
							|  |  |  |         return PIL.Image.fromarray(output, 'RGB') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def load_model(self, path: str): | 
					
						
							| 
									
										
										
										
											2022-10-04 04:24:35 -04:00
										 |  |  |         device = devices.device_scunet | 
					
						
							| 
									
										
										
										
											2022-09-30 15:28:37 -05:00
										 |  |  |         if "http" in path: | 
					
						
							|  |  |  |             filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name, | 
					
						
							|  |  |  |                                           progress=True) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             filename = path | 
					
						
							|  |  |  |         if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None: | 
					
						
							|  |  |  |             print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr) | 
					
						
							|  |  |  |             return None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) | 
					
						
							|  |  |  |         model.load_state_dict(torch.load(filename), strict=True) | 
					
						
							|  |  |  |         model.eval() | 
					
						
							|  |  |  |         for k, v in model.named_parameters(): | 
					
						
							|  |  |  |             v.requires_grad = False | 
					
						
							|  |  |  |         model = model.to(device) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return model | 
					
						
							|  |  |  | 
 |