| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | from collections import namedtuple | 
					
						
							| 
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | import torch | 
					
						
							|  |  |  | import tqdm | 
					
						
							| 
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 |  |  | from PIL import Image | 
					
						
							| 
									
										
										
										
											2022-09-28 10:49:07 +03:00
										 |  |  | import inspect | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | import k_diffusion.sampling | 
					
						
							| 
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 |  |  | import ldm.models.diffusion.ddim | 
					
						
							|  |  |  | import ldm.models.diffusion.plms | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  | from modules import prompt_parser | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | from modules.shared import opts, cmd_opts, state | 
					
						
							|  |  |  | import modules.shared as shared | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  | SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) | 
					
						
							| 
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | samplers_k_diffusion = [ | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  |     ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}), | 
					
						
							|  |  |  |     ('Euler', 'sample_euler', ['k_euler'], {}), | 
					
						
							|  |  |  |     ('LMS', 'sample_lms', ['k_lms'], {}), | 
					
						
							|  |  |  |     ('Heun', 'sample_heun', ['k_heun'], {}), | 
					
						
							|  |  |  |     ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}), | 
					
						
							|  |  |  |     ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}), | 
					
						
							|  |  |  |     ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), | 
					
						
							|  |  |  |     ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), | 
					
						
							|  |  |  |     ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), | 
					
						
							|  |  |  |     ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}), | 
					
						
							|  |  |  |     ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}), | 
					
						
							| 
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 |  |  | ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | samplers_data_k_diffusion = [ | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  |     SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) | 
					
						
							|  |  |  |     for label, funcname, aliases, options in samplers_k_diffusion | 
					
						
							| 
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 |  |  |     if hasattr(k_diffusion.sampling, funcname) | 
					
						
							|  |  |  | ] | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-06 12:08:48 +03:00
										 |  |  | all_samplers = [ | 
					
						
							| 
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 |  |  |     *samplers_data_k_diffusion, | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  |     SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), | 
					
						
							|  |  |  |     SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | ] | 
					
						
							| 
									
										
										
										
											2022-10-06 12:08:48 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | samplers = [] | 
					
						
							|  |  |  | samplers_for_img2img = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  | def create_sampler_with_index(list_of_configs, index, model): | 
					
						
							|  |  |  |     config = list_of_configs[index] | 
					
						
							|  |  |  |     sampler = config.constructor(model) | 
					
						
							|  |  |  |     sampler.config = config | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     return sampler | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-06 12:08:48 +03:00
										 |  |  | def set_samplers(): | 
					
						
							|  |  |  |     global samplers, samplers_for_img2img | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     hidden = set(opts.hide_samplers) | 
					
						
							|  |  |  |     hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     samplers = [x for x in all_samplers if x.name not in hidden] | 
					
						
							|  |  |  |     samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | set_samplers() | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 |  |  | sampler_extra_params = { | 
					
						
							| 
									
										
										
										
											2022-09-28 10:49:07 +03:00
										 |  |  |     'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], | 
					
						
							|  |  |  |     'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], | 
					
						
							|  |  |  |     'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], | 
					
						
							| 
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 |  |  | } | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  | def setup_img2img_steps(p, steps=None): | 
					
						
							|  |  |  |     if opts.img2img_fix_steps or steps is not None: | 
					
						
							|  |  |  |         steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 | 
					
						
							| 
									
										
										
										
											2022-09-16 13:38:02 +03:00
										 |  |  |         t_enc = p.steps - 1 | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         steps = p.steps | 
					
						
							|  |  |  |         t_enc = int(min(p.denoising_strength, 0.999) * steps) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return steps, t_enc | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 |  |  | def sample_to_image(samples): | 
					
						
							|  |  |  |     x_sample = shared.sd_model.decode_first_stage(samples[0:1].type(shared.sd_model.dtype))[0] | 
					
						
							|  |  |  |     x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) | 
					
						
							|  |  |  |     x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) | 
					
						
							|  |  |  |     x_sample = x_sample.astype(np.uint8) | 
					
						
							|  |  |  |     return Image.fromarray(x_sample) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def store_latent(decoded): | 
					
						
							|  |  |  |     state.current_latent = decoded | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: | 
					
						
							|  |  |  |         if not shared.parallel_processing_allowed: | 
					
						
							|  |  |  |             shared.state.current_image = sample_to_image(decoded) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 |  |  | def extended_tdqm(sequence, *args, desc=None, **kwargs): | 
					
						
							|  |  |  |     state.sampling_steps = len(sequence) | 
					
						
							|  |  |  |     state.sampling_step = 0 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-02 20:23:40 +03:00
										 |  |  |     seq = sequence if cmd_opts.disable_console_progressbars else tqdm.tqdm(sequence, *args, desc=state.job, file=shared.progress_print_out, **kwargs) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for x in seq: | 
					
						
							| 
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 |  |  |         if state.interrupted: | 
					
						
							|  |  |  |             break | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         yield x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         state.sampling_step += 1 | 
					
						
							| 
									
										
										
										
											2022-09-08 15:37:13 +02:00
										 |  |  |         shared.total_tqdm.update() | 
					
						
							| 
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ldm.models.diffusion.ddim.tqdm = lambda *args, desc=None, **kwargs: extended_tdqm(*args, desc=desc, **kwargs) | 
					
						
							|  |  |  | ldm.models.diffusion.plms.tqdm = lambda *args, desc=None, **kwargs: extended_tdqm(*args, desc=desc, **kwargs) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | class VanillaStableDiffusionSampler: | 
					
						
							|  |  |  |     def __init__(self, constructor, sd_model): | 
					
						
							|  |  |  |         self.sampler = constructor(sd_model) | 
					
						
							| 
									
										
										
										
											2022-09-08 19:34:20 +03:00
										 |  |  |         self.orig_p_sample_ddim = self.sampler.p_sample_ddim if hasattr(self.sampler, 'p_sample_ddim') else self.sampler.p_sample_plms | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         self.mask = None | 
					
						
							|  |  |  |         self.nmask = None | 
					
						
							|  |  |  |         self.init_latent = None | 
					
						
							| 
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 |  |  |         self.sampler_noises = None | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  |         self.step = 0 | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |         self.eta = None | 
					
						
							|  |  |  |         self.default_eta = 0.0 | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  |         self.config = None | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 |  |  |     def number_of_needed_noises(self, p): | 
					
						
							|  |  |  |         return 0 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  |     def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): | 
					
						
							| 
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 |  |  |         conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  |         unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 |  |  |         assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' | 
					
						
							|  |  |  |         cond = tensor | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  |         if self.mask is not None: | 
					
						
							|  |  |  |             img_orig = self.sampler.model.q_sample(self.init_latent, ts) | 
					
						
							|  |  |  |             x_dec = img_orig * self.mask + self.nmask * x_dec | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if self.mask is not None: | 
					
						
							|  |  |  |             store_latent(self.init_latent * self.mask + self.nmask * res[1]) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             store_latent(res[1]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.step += 1 | 
					
						
							|  |  |  |         return res | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |     def initialize(self, p): | 
					
						
							| 
									
										
										
										
											2022-09-30 22:38:14 +01:00
										 |  |  |         self.eta = p.eta if p.eta is not None else opts.eta_ddim | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         for fieldname in ['p_sample_ddim', 'p_sample_plms']: | 
					
						
							|  |  |  |             if hasattr(self.sampler, fieldname): | 
					
						
							|  |  |  |                 setattr(self.sampler, fieldname, self.p_sample_ddim_hook) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.mask = p.mask if hasattr(p, 'mask') else None | 
					
						
							|  |  |  |         self.nmask = p.nmask if hasattr(p, 'nmask') else None | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |     def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None): | 
					
						
							|  |  |  |         steps, t_enc = setup_img2img_steps(p, steps) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-28 22:30:52 +03:00
										 |  |  |         self.initialize(p) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-13 20:12:24 +03:00
										 |  |  |         # existing code fails with cetain step counts, like 9 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         try: | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |             self.sampler.make_schedule(ddim_num_steps=steps,  ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         except Exception: | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |             self.sampler.make_schedule(ddim_num_steps=steps+1, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |         self.init_latent = x | 
					
						
							| 
									
										
										
										
											2022-09-16 08:51:21 +03:00
										 |  |  |         self.step = 0 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         samples = self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return samples | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |     def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |         self.initialize(p) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-08 19:20:41 +03:00
										 |  |  |         self.init_latent = None | 
					
						
							| 
									
										
										
										
											2022-09-16 08:51:21 +03:00
										 |  |  |         self.step = 0 | 
					
						
							| 
									
										
										
										
											2022-09-08 19:20:41 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |         steps = steps or p.steps | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-13 20:12:24 +03:00
										 |  |  |         # existing code fails with cetin step counts, like 9 | 
					
						
							|  |  |  |         try: | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |             samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta) | 
					
						
							| 
									
										
										
										
											2022-09-13 20:12:24 +03:00
										 |  |  |         except Exception: | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |             samples_ddim, _ = self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta) | 
					
						
							| 
									
										
										
										
											2022-09-13 20:12:24 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         return samples_ddim | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CFGDenoiser(torch.nn.Module): | 
					
						
							|  |  |  |     def __init__(self, model): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.inner_model = model | 
					
						
							|  |  |  |         self.mask = None | 
					
						
							|  |  |  |         self.nmask = None | 
					
						
							|  |  |  |         self.init_latent = None | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  |         self.step = 0 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x, sigma, uncond, cond, cond_scale): | 
					
						
							| 
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 |  |  |         conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  |         uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 |  |  |         batch_size = len(conds_list) | 
					
						
							|  |  |  |         repeats = [len(conds_list[i]) for i in range(batch_size)] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) | 
					
						
							|  |  |  |         sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) | 
					
						
							|  |  |  |         cond_in = torch.cat([tensor, uncond]) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         if shared.batch_cond_uncond: | 
					
						
							| 
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 |  |  |             x_out = self.inner_model(x_in, sigma_in, cond=cond_in) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         else: | 
					
						
							| 
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 |  |  |             x_out = torch.zeros_like(x_in) | 
					
						
							|  |  |  |             for batch_offset in range(0, x_out.shape[0], batch_size): | 
					
						
							|  |  |  |                 a = batch_offset | 
					
						
							|  |  |  |                 b = a + batch_size | 
					
						
							|  |  |  |                 x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         denoised_uncond = x_out[-batch_size:] | 
					
						
							|  |  |  |         denoised = torch.clone(denoised_uncond) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for i, conds in enumerate(conds_list): | 
					
						
							|  |  |  |             for cond_index, weight in conds: | 
					
						
							|  |  |  |                 denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if self.mask is not None: | 
					
						
							|  |  |  |             denoised = self.init_latent * self.mask + self.nmask * denoised | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 |  |  |         self.step += 1 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         return denoised | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  | def extended_trange(sampler, count, *args, **kwargs): | 
					
						
							| 
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 |  |  |     state.sampling_steps = count | 
					
						
							|  |  |  |     state.sampling_step = 0 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-02 20:23:40 +03:00
										 |  |  |     seq = range(count) if cmd_opts.disable_console_progressbars else tqdm.trange(count, *args, desc=state.job, file=shared.progress_print_out, **kwargs) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for x in seq: | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         if state.interrupted: | 
					
						
							|  |  |  |             break | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |         if sampler.stop_at is not None and x > sampler.stop_at: | 
					
						
							|  |  |  |             break | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         yield x | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 |  |  |         state.sampling_step += 1 | 
					
						
							| 
									
										
										
										
											2022-09-08 15:37:13 +02:00
										 |  |  |         shared.total_tqdm.update() | 
					
						
							| 
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-16 09:47:03 +03:00
										 |  |  | class TorchHijack: | 
					
						
							|  |  |  |     def __init__(self, kdiff_sampler): | 
					
						
							|  |  |  |         self.kdiff_sampler = kdiff_sampler | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __getattr__(self, item): | 
					
						
							|  |  |  |         if item == 'randn_like': | 
					
						
							|  |  |  |             return self.kdiff_sampler.randn_like | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if hasattr(torch, item): | 
					
						
							|  |  |  |             return getattr(torch, item) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | class KDiffusionSampler: | 
					
						
							|  |  |  |     def __init__(self, funcname, sd_model): | 
					
						
							| 
									
										
										
										
											2022-09-15 14:55:38 +03:00
										 |  |  |         self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         self.funcname = funcname | 
					
						
							|  |  |  |         self.func = getattr(k_diffusion.sampling, self.funcname) | 
					
						
							| 
									
										
										
										
											2022-09-28 10:49:07 +03:00
										 |  |  |         self.extra_params = sampler_extra_params.get(funcname, []) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         self.model_wrap_cfg = CFGDenoiser(self.model_wrap) | 
					
						
							| 
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 |  |  |         self.sampler_noises = None | 
					
						
							|  |  |  |         self.sampler_noise_index = 0 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |         self.stop_at = None | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |         self.eta = None | 
					
						
							|  |  |  |         self.default_eta = 1.0 | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  |         self.config = None | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-06 19:33:51 +03:00
										 |  |  |     def callback_state(self, d): | 
					
						
							| 
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 |  |  |         store_latent(d["denoised"]) | 
					
						
							| 
									
										
										
										
											2022-09-06 19:33:51 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 |  |  |     def number_of_needed_noises(self, p): | 
					
						
							|  |  |  |         return p.steps | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def randn_like(self, x): | 
					
						
							|  |  |  |         noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if noise is not None and x.shape == noise.shape: | 
					
						
							|  |  |  |             res = noise | 
					
						
							|  |  |  |         else: | 
					
						
							| 
									
										
										
										
											2022-09-16 09:47:03 +03:00
										 |  |  |             res = torch.randn_like(x) | 
					
						
							| 
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.sampler_noise_index += 1 | 
					
						
							|  |  |  |         return res | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |     def initialize(self, p): | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |         self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None | 
					
						
							|  |  |  |         self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None | 
					
						
							| 
									
										
										
										
											2022-09-16 08:51:21 +03:00
										 |  |  |         self.model_wrap.step = 0 | 
					
						
							| 
									
										
										
										
											2022-09-18 23:43:37 +03:00
										 |  |  |         self.sampler_noise_index = 0 | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |         self.eta = p.eta or opts.eta_ancestral | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if hasattr(k_diffusion.sampling, 'trange'): | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |             k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-16 09:47:03 +03:00
										 |  |  |         if self.sampler_noises is not None: | 
					
						
							|  |  |  |             k_diffusion.sampling.torch = TorchHijack(self) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 |  |  |         extra_params_kwargs = {} | 
					
						
							| 
									
										
										
										
											2022-09-28 10:49:07 +03:00
										 |  |  |         for param_name in self.extra_params: | 
					
						
							|  |  |  |             if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters: | 
					
						
							|  |  |  |                 extra_params_kwargs[param_name] = getattr(p, param_name) | 
					
						
							| 
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |         if 'eta' in inspect.signature(self.func).parameters: | 
					
						
							|  |  |  |             extra_params_kwargs['eta'] = self.eta | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return extra_params_kwargs | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None): | 
					
						
							|  |  |  |         steps, t_enc = setup_img2img_steps(p, steps) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-30 01:46:06 +01:00
										 |  |  |         if p.sampler_noise_scheduler_override: | 
					
						
							|  |  |  |           sigmas = p.sampler_noise_scheduler_override(steps) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |           sigmas = self.model_wrap.get_sigmas(steps) | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         noise = noise * sigmas[steps - t_enc - 1] | 
					
						
							|  |  |  |         xi = x + noise | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         extra_params_kwargs = self.initialize(p) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         sigma_sched = sigmas[steps - t_enc - 1:] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.model_wrap_cfg.init_latent = x | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 |  |  |         return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |     def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): | 
					
						
							|  |  |  |         steps = steps or p.steps | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-30 01:46:06 +01:00
										 |  |  |         if p.sampler_noise_scheduler_override: | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  |             sigmas = p.sampler_noise_scheduler_override(steps) | 
					
						
							|  |  |  |         elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': | 
					
						
							|  |  |  |             sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device) | 
					
						
							| 
									
										
										
										
											2022-09-30 01:46:06 +01:00
										 |  |  |         else: | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  |             sigmas = self.model_wrap.get_sigmas(steps) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         x = x * sigmas[0] | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 |  |  |         extra_params_kwargs = self.initialize(p) | 
					
						
							| 
									
										
										
										
											2022-09-29 10:15:38 +03:00
										 |  |  |         if 'sigma_min' in inspect.signature(self.func).parameters: | 
					
						
							| 
									
										
										
										
											2022-09-29 13:30:33 +03:00
										 |  |  |             extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() | 
					
						
							|  |  |  |             extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() | 
					
						
							| 
									
										
										
										
											2022-09-29 10:15:38 +03:00
										 |  |  |             if 'n' in inspect.signature(self.func).parameters: | 
					
						
							| 
									
										
										
										
											2022-09-29 13:30:33 +03:00
										 |  |  |                 extra_params_kwargs['n'] = steps | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             extra_params_kwargs['sigmas'] = sigmas | 
					
						
							|  |  |  |         samples = self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) | 
					
						
							| 
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 |  |  |         return samples | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 |