| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  | import math | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | import os | 
					
						
							|  |  |  | import sys | 
					
						
							|  |  |  | import traceback | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | from torch import einsum | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-29 11:31:48 +03:00
										 |  |  | from modules import prompt_parser | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | from modules.shared import opts, device, cmd_opts | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from ldm.util import default | 
					
						
							|  |  |  | from einops import rearrange | 
					
						
							|  |  |  | import ldm.modules.attention | 
					
						
							| 
									
										
										
										
											2022-09-13 14:29:56 +03:00
										 |  |  | import ldm.modules.diffusionmodules.model | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 00:29:10 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion | 
					
						
							|  |  |  | def split_cross_attention_forward_v1(self, x, context=None, mask=None): | 
					
						
							|  |  |  |     h = self.heads | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     q = self.to_q(x) | 
					
						
							|  |  |  |     context = default(context, x) | 
					
						
							| 
									
										
										
										
											2022-09-18 01:21:50 +03:00
										 |  |  |     k = self.to_k(context) | 
					
						
							| 
									
										
										
										
											2022-09-11 00:29:10 +03:00
										 |  |  |     v = self.to_v(context) | 
					
						
							|  |  |  |     del context, x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) | 
					
						
							|  |  |  |     for i in range(0, q.shape[0], 2): | 
					
						
							|  |  |  |         end = i + 2 | 
					
						
							|  |  |  |         s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) | 
					
						
							|  |  |  |         s1 *= self.scale | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         s2 = s1.softmax(dim=-1) | 
					
						
							|  |  |  |         del s1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) | 
					
						
							|  |  |  |         del s2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | 
					
						
							|  |  |  |     del r1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return self.to_out(r2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  | # taken from https://github.com/Doggettx/stable-diffusion | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | def split_cross_attention_forward(self, x, context=None, mask=None): | 
					
						
							|  |  |  |     h = self.heads | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  |     q_in = self.to_q(x) | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  |     context = default(context, x) | 
					
						
							| 
									
										
										
										
											2022-09-18 01:21:50 +03:00
										 |  |  |     k_in = self.to_k(context) * self.scale | 
					
						
							| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  |     v_in = self.to_v(context) | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  |     del context, x | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  |     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) | 
					
						
							|  |  |  |     del q_in, k_in, v_in | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-15 13:48:13 +03:00
										 |  |  |     r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | 
					
						
							| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     stats = torch.cuda.memory_stats(q.device) | 
					
						
							|  |  |  |     mem_active = stats['active_bytes.all.current'] | 
					
						
							|  |  |  |     mem_reserved = stats['reserved_bytes.all.current'] | 
					
						
							|  |  |  |     mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | 
					
						
							|  |  |  |     mem_free_torch = mem_reserved - mem_active | 
					
						
							|  |  |  |     mem_free_total = mem_free_cuda + mem_free_torch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gb = 1024 ** 3 | 
					
						
							| 
									
										
										
										
											2022-09-12 16:48:21 +03:00
										 |  |  |     tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() | 
					
						
							|  |  |  |     modifier = 3 if q.element_size() == 2 else 2.5 | 
					
						
							|  |  |  |     mem_required = tensor_size * modifier | 
					
						
							| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  |     steps = 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if mem_required > mem_free_total: | 
					
						
							|  |  |  |         steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) | 
					
						
							|  |  |  |         # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " | 
					
						
							|  |  |  |         #       f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if steps > 64: | 
					
						
							|  |  |  |         max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 | 
					
						
							|  |  |  |         raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' | 
					
						
							|  |  |  |                            f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | 
					
						
							|  |  |  |     for i in range(0, q.shape[1], slice_size): | 
					
						
							|  |  |  |         end = i + slice_size | 
					
						
							| 
									
										
										
										
											2022-09-18 01:05:31 +03:00
										 |  |  |         s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 16:48:21 +03:00
										 |  |  |         s2 = s1.softmax(dim=-1, dtype=q.dtype) | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  |         del s1 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  |         r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  |         del s2 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-10 12:06:19 +03:00
										 |  |  |     del q, k, v | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  |     r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | 
					
						
							|  |  |  |     del r1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return self.to_out(r2) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-13 14:29:56 +03:00
										 |  |  | def nonlinearity_hijack(x): | 
					
						
							|  |  |  |     # swish | 
					
						
							|  |  |  |     t = torch.sigmoid(x) | 
					
						
							|  |  |  |     x *= t | 
					
						
							|  |  |  |     del t | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def cross_attention_attnblock_forward(self, x): | 
					
						
							|  |  |  |         h_ = x | 
					
						
							|  |  |  |         h_ = self.norm(h_) | 
					
						
							|  |  |  |         q1 = self.q(h_) | 
					
						
							|  |  |  |         k1 = self.k(h_) | 
					
						
							|  |  |  |         v = self.v(h_) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # compute attention | 
					
						
							|  |  |  |         b, c, h, w = q1.shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         q2 = q1.reshape(b, c, h*w) | 
					
						
							|  |  |  |         del q1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         q = q2.permute(0, 2, 1)   # b,hw,c | 
					
						
							|  |  |  |         del q2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         k = k1.reshape(b, c, h*w) # b,c,hw | 
					
						
							|  |  |  |         del k1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         h_ = torch.zeros_like(k, device=q.device) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         stats = torch.cuda.memory_stats(q.device) | 
					
						
							|  |  |  |         mem_active = stats['active_bytes.all.current'] | 
					
						
							|  |  |  |         mem_reserved = stats['reserved_bytes.all.current'] | 
					
						
							|  |  |  |         mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | 
					
						
							|  |  |  |         mem_free_torch = mem_reserved - mem_active | 
					
						
							|  |  |  |         mem_free_total = mem_free_cuda + mem_free_torch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() | 
					
						
							|  |  |  |         mem_required = tensor_size * 2.5 | 
					
						
							|  |  |  |         steps = 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if mem_required > mem_free_total: | 
					
						
							|  |  |  |             steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | 
					
						
							|  |  |  |         for i in range(0, q.shape[1], slice_size): | 
					
						
							|  |  |  |             end = i + slice_size | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             w1 = torch.bmm(q[:, i:end], k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | 
					
						
							|  |  |  |             w2 = w1 * (int(c)**(-0.5)) | 
					
						
							|  |  |  |             del w1 | 
					
						
							|  |  |  |             w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) | 
					
						
							|  |  |  |             del w2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # attend to values | 
					
						
							|  |  |  |             v1 = v.reshape(b, c, h*w) | 
					
						
							|  |  |  |             w4 = w3.permute(0, 2, 1)   # b,hw,hw (first hw of k, second of q) | 
					
						
							|  |  |  |             del w3 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             h_[:, :, i:end] = torch.bmm(v1, w4)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | 
					
						
							|  |  |  |             del v1, w4 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         h2 = h_.reshape(b, c, h, w) | 
					
						
							|  |  |  |         del h_ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         h3 = self.proj_out(h2) | 
					
						
							|  |  |  |         del h2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         h3 += x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return h3 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | class StableDiffusionModelHijack: | 
					
						
							|  |  |  |     ids_lookup = {} | 
					
						
							|  |  |  |     word_embeddings = {} | 
					
						
							|  |  |  |     word_embeddings_checksums = {} | 
					
						
							|  |  |  |     fixes = None | 
					
						
							|  |  |  |     comments = [] | 
					
						
							|  |  |  |     dir_mtime = None | 
					
						
							| 
									
										
										
										
											2022-09-05 03:25:37 +03:00
										 |  |  |     layers = None | 
					
						
							|  |  |  |     circular_enabled = False | 
					
						
							| 
									
										
										
										
											2022-09-27 15:56:18 -04:00
										 |  |  |     clip = None | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def load_textual_inversion_embeddings(self, dirname, model): | 
					
						
							|  |  |  |         mt = os.path.getmtime(dirname) | 
					
						
							|  |  |  |         if self.dir_mtime is not None and mt <= self.dir_mtime: | 
					
						
							|  |  |  |             return | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.dir_mtime = mt | 
					
						
							|  |  |  |         self.ids_lookup.clear() | 
					
						
							|  |  |  |         self.word_embeddings.clear() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         tokenizer = model.cond_stage_model.tokenizer | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         def const_hash(a): | 
					
						
							|  |  |  |             r = 0 | 
					
						
							|  |  |  |             for v in a: | 
					
						
							|  |  |  |                 r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF | 
					
						
							|  |  |  |             return r | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         def process_file(path, filename): | 
					
						
							|  |  |  |             name = os.path.splitext(filename)[0] | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-25 15:04:39 +03:00
										 |  |  |             data = torch.load(path, map_location="cpu") | 
					
						
							| 
									
										
										
										
											2022-09-08 15:36:50 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |             # textual inversion embeddings | 
					
						
							|  |  |  |             if 'string_to_param' in data: | 
					
						
							|  |  |  |                 param_dict = data['string_to_param'] | 
					
						
							|  |  |  |                 if hasattr(param_dict, '_parameters'): | 
					
						
							|  |  |  |                     param_dict = getattr(param_dict, '_parameters')  # fix for torch 1.12.1 loading saved file from torch 1.11 | 
					
						
							|  |  |  |                 assert len(param_dict) == 1, 'embedding file has multiple terms in it' | 
					
						
							|  |  |  |                 emb = next(iter(param_dict.items()))[1] | 
					
						
							| 
									
										
										
										
											2022-09-29 11:31:48 +03:00
										 |  |  |             # diffuser concepts | 
					
						
							| 
									
										
										
										
											2022-09-08 15:36:50 +03:00
										 |  |  |             elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: | 
					
						
							|  |  |  |                 assert len(data.keys()) == 1, 'embedding file has multiple terms in it' | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 emb = next(iter(data.values())) | 
					
						
							|  |  |  |                 if len(emb.shape) == 1: | 
					
						
							|  |  |  |                     emb = emb.unsqueeze(0) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-25 15:04:39 +03:00
										 |  |  |             self.word_embeddings[name] = emb.detach().to(device) | 
					
						
							| 
									
										
										
										
											2022-09-20 09:53:29 +03:00
										 |  |  |             self.word_embeddings_checksums[name] = f'{const_hash(emb.reshape(-1)*100)&0xffff:04x}' | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |             ids = tokenizer([name], add_special_tokens=False)['input_ids'][0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             first_id = ids[0] | 
					
						
							|  |  |  |             if first_id not in self.ids_lookup: | 
					
						
							|  |  |  |                 self.ids_lookup[first_id] = [] | 
					
						
							|  |  |  |             self.ids_lookup[first_id].append((ids, name)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for fn in os.listdir(dirname): | 
					
						
							|  |  |  |             try: | 
					
						
							|  |  |  |                 process_file(os.path.join(dirname, fn), fn) | 
					
						
							|  |  |  |             except Exception: | 
					
						
							|  |  |  |                 print(f"Error loading emedding {fn}:", file=sys.stderr) | 
					
						
							|  |  |  |                 print(traceback.format_exc(), file=sys.stderr) | 
					
						
							|  |  |  |                 continue | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-29 11:31:48 +03:00
										 |  |  |         print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.") | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def hijack(self, m): | 
					
						
							|  |  |  |         model_embeddings = m.cond_stage_model.transformer.text_model.embeddings | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) | 
					
						
							|  |  |  |         m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) | 
					
						
							| 
									
										
										
										
											2022-09-29 15:40:28 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-27 15:56:18 -04:00
										 |  |  |         self.clip = m.cond_stage_model | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-18 20:55:46 +03:00
										 |  |  |         if cmd_opts.opt_split_attention_v1: | 
					
						
							|  |  |  |             ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1 | 
					
						
							| 
									
										
										
										
											2022-09-21 09:49:02 +03:00
										 |  |  |         elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  |             ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward | 
					
						
							| 
									
										
										
										
											2022-09-13 14:29:56 +03:00
										 |  |  |             ldm.modules.diffusionmodules.model.nonlinearity = nonlinearity_hijack | 
					
						
							|  |  |  |             ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-05 03:25:37 +03:00
										 |  |  |         def flatten(el): | 
					
						
							|  |  |  |             flattened = [flatten(children) for children in el.children()] | 
					
						
							|  |  |  |             res = [el] | 
					
						
							|  |  |  |             for c in flattened: | 
					
						
							|  |  |  |                 res += c | 
					
						
							|  |  |  |             return res | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.layers = flatten(m) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-29 15:40:28 +03:00
										 |  |  |     def undo_hijack(self, m): | 
					
						
							|  |  |  |         if type(m.cond_stage_model) == FrozenCLIPEmbedderWithCustomWords: | 
					
						
							|  |  |  |             m.cond_stage_model = m.cond_stage_model.wrapped | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         model_embeddings = m.cond_stage_model.transformer.text_model.embeddings | 
					
						
							|  |  |  |         if type(model_embeddings.token_embedding) == EmbeddingsWithFixes: | 
					
						
							|  |  |  |             model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-05 03:25:37 +03:00
										 |  |  |     def apply_circular(self, enable): | 
					
						
							|  |  |  |         if self.circular_enabled == enable: | 
					
						
							|  |  |  |             return | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.circular_enabled = enable | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]: | 
					
						
							|  |  |  |             layer.padding_mode = 'circular' if enable else 'zeros' | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-27 15:56:18 -04:00
										 |  |  |     def tokenize(self, text): | 
					
						
							|  |  |  |         max_length = self.clip.max_length - 2 | 
					
						
							|  |  |  |         _, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text]) | 
					
						
							| 
									
										
										
										
											2022-09-27 19:29:53 -04:00
										 |  |  |         return remade_batch_tokens[0], token_count, max_length | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-29 11:31:48 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): | 
					
						
							|  |  |  |     def __init__(self, wrapped, hijack): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.wrapped = wrapped | 
					
						
							|  |  |  |         self.hijack = hijack | 
					
						
							|  |  |  |         self.tokenizer = wrapped.tokenizer | 
					
						
							|  |  |  |         self.max_length = wrapped.max_length | 
					
						
							|  |  |  |         self.token_mults = {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] | 
					
						
							|  |  |  |         for text, ident in tokens_with_parens: | 
					
						
							|  |  |  |             mult = 1.0 | 
					
						
							|  |  |  |             for c in text: | 
					
						
							|  |  |  |                 if c == '[': | 
					
						
							|  |  |  |                     mult /= 1.1 | 
					
						
							|  |  |  |                 if c == ']': | 
					
						
							|  |  |  |                     mult *= 1.1 | 
					
						
							|  |  |  |                 if c == '(': | 
					
						
							|  |  |  |                     mult *= 1.1 | 
					
						
							|  |  |  |                 if c == ')': | 
					
						
							|  |  |  |                     mult /= 1.1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             if mult != 1.0: | 
					
						
							|  |  |  |                 self.token_mults[ident] = mult | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-29 11:31:48 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def tokenize_line(self, line, used_custom_terms, hijack_comments): | 
					
						
							|  |  |  |         id_start = self.wrapped.tokenizer.bos_token_id | 
					
						
							|  |  |  |         id_end = self.wrapped.tokenizer.eos_token_id | 
					
						
							|  |  |  |         maxlen = self.wrapped.max_length | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if opts.enable_emphasis: | 
					
						
							|  |  |  |             parsed = prompt_parser.parse_prompt_attention(line) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             parsed = [[line, 1.0]] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         fixes = [] | 
					
						
							|  |  |  |         remade_tokens = [] | 
					
						
							|  |  |  |         multipliers = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for tokens, (text, weight) in zip(tokenized, parsed): | 
					
						
							|  |  |  |             i = 0 | 
					
						
							|  |  |  |             while i < len(tokens): | 
					
						
							|  |  |  |                 token = tokens[i] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 possible_matches = self.hijack.ids_lookup.get(token, None) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 if possible_matches is None: | 
					
						
							|  |  |  |                     remade_tokens.append(token) | 
					
						
							|  |  |  |                     multipliers.append(weight) | 
					
						
							|  |  |  |                 else: | 
					
						
							|  |  |  |                     found = False | 
					
						
							|  |  |  |                     for ids, word in possible_matches: | 
					
						
							|  |  |  |                         if tokens[i:i + len(ids)] == ids: | 
					
						
							|  |  |  |                             emb_len = int(self.hijack.word_embeddings[word].shape[0]) | 
					
						
							|  |  |  |                             fixes.append((len(remade_tokens), word)) | 
					
						
							|  |  |  |                             remade_tokens += [0] * emb_len | 
					
						
							|  |  |  |                             multipliers += [weight] * emb_len | 
					
						
							|  |  |  |                             i += len(ids) - 1 | 
					
						
							|  |  |  |                             found = True | 
					
						
							|  |  |  |                             used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word])) | 
					
						
							|  |  |  |                             break | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     if not found: | 
					
						
							|  |  |  |                         remade_tokens.append(token) | 
					
						
							|  |  |  |                         multipliers.append(weight) | 
					
						
							|  |  |  |                 i += 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if len(remade_tokens) > maxlen - 2: | 
					
						
							|  |  |  |             vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} | 
					
						
							|  |  |  |             ovf = remade_tokens[maxlen - 2:] | 
					
						
							|  |  |  |             overflowing_words = [vocab.get(int(x), "") for x in ovf] | 
					
						
							|  |  |  |             overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) | 
					
						
							|  |  |  |             hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         token_count = len(remade_tokens) | 
					
						
							|  |  |  |         remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) | 
					
						
							|  |  |  |         remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) | 
					
						
							|  |  |  |         multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return remade_tokens, fixes, multipliers, token_count | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def process_text(self, texts): | 
					
						
							|  |  |  |         used_custom_terms = [] | 
					
						
							|  |  |  |         remade_batch_tokens = [] | 
					
						
							|  |  |  |         hijack_comments = [] | 
					
						
							|  |  |  |         hijack_fixes = [] | 
					
						
							|  |  |  |         token_count = 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         cache = {} | 
					
						
							|  |  |  |         batch_multipliers = [] | 
					
						
							|  |  |  |         for line in texts: | 
					
						
							|  |  |  |             if line in cache: | 
					
						
							|  |  |  |                 remade_tokens, fixes, multipliers = cache[line] | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 remade_tokens, fixes, multipliers, token_count = self.tokenize_line(line, used_custom_terms, hijack_comments) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 cache[line] = (remade_tokens, fixes, multipliers) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             remade_batch_tokens.append(remade_tokens) | 
					
						
							|  |  |  |             hijack_fixes.append(fixes) | 
					
						
							|  |  |  |             batch_multipliers.append(multipliers) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def process_text_old(self, text): | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         id_start = self.wrapped.tokenizer.bos_token_id | 
					
						
							|  |  |  |         id_end = self.wrapped.tokenizer.eos_token_id | 
					
						
							| 
									
										
										
										
											2022-09-25 14:13:03 +08:00
										 |  |  |         maxlen = self.wrapped.max_length | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         used_custom_terms = [] | 
					
						
							| 
									
										
										
										
											2022-09-27 15:56:18 -04:00
										 |  |  |         remade_batch_tokens = [] | 
					
						
							|  |  |  |         overflowing_words = [] | 
					
						
							|  |  |  |         hijack_comments = [] | 
					
						
							|  |  |  |         hijack_fixes = [] | 
					
						
							|  |  |  |         token_count = 0 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         cache = {} | 
					
						
							|  |  |  |         batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"] | 
					
						
							|  |  |  |         batch_multipliers = [] | 
					
						
							|  |  |  |         for tokens in batch_tokens: | 
					
						
							|  |  |  |             tuple_tokens = tuple(tokens) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             if tuple_tokens in cache: | 
					
						
							|  |  |  |                 remade_tokens, fixes, multipliers = cache[tuple_tokens] | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 fixes = [] | 
					
						
							|  |  |  |                 remade_tokens = [] | 
					
						
							|  |  |  |                 multipliers = [] | 
					
						
							|  |  |  |                 mult = 1.0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 i = 0 | 
					
						
							|  |  |  |                 while i < len(tokens): | 
					
						
							|  |  |  |                     token = tokens[i] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     possible_matches = self.hijack.ids_lookup.get(token, None) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     mult_change = self.token_mults.get(token) if opts.enable_emphasis else None | 
					
						
							|  |  |  |                     if mult_change is not None: | 
					
						
							|  |  |  |                         mult *= mult_change | 
					
						
							|  |  |  |                     elif possible_matches is None: | 
					
						
							|  |  |  |                         remade_tokens.append(token) | 
					
						
							|  |  |  |                         multipliers.append(mult) | 
					
						
							|  |  |  |                     else: | 
					
						
							|  |  |  |                         found = False | 
					
						
							|  |  |  |                         for ids, word in possible_matches: | 
					
						
							|  |  |  |                             if tokens[i:i+len(ids)] == ids: | 
					
						
							|  |  |  |                                 emb_len = int(self.hijack.word_embeddings[word].shape[0]) | 
					
						
							|  |  |  |                                 fixes.append((len(remade_tokens), word)) | 
					
						
							|  |  |  |                                 remade_tokens += [0] * emb_len | 
					
						
							|  |  |  |                                 multipliers += [mult] * emb_len | 
					
						
							|  |  |  |                                 i += len(ids) - 1 | 
					
						
							|  |  |  |                                 found = True | 
					
						
							|  |  |  |                                 used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word])) | 
					
						
							|  |  |  |                                 break | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                         if not found: | 
					
						
							|  |  |  |                             remade_tokens.append(token) | 
					
						
							|  |  |  |                             multipliers.append(mult) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     i += 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 if len(remade_tokens) > maxlen - 2: | 
					
						
							|  |  |  |                     vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} | 
					
						
							|  |  |  |                     ovf = remade_tokens[maxlen - 2:] | 
					
						
							|  |  |  |                     overflowing_words = [vocab.get(int(x), "") for x in ovf] | 
					
						
							|  |  |  |                     overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) | 
					
						
							| 
									
										
										
										
											2022-09-27 15:56:18 -04:00
										 |  |  |                     hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") | 
					
						
							|  |  |  |                 token_count = len(remade_tokens) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |                 remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) | 
					
						
							|  |  |  |                 remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end] | 
					
						
							|  |  |  |                 cache[tuple_tokens] = (remade_tokens, fixes, multipliers) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) | 
					
						
							|  |  |  |             multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             remade_batch_tokens.append(remade_tokens) | 
					
						
							| 
									
										
										
										
											2022-09-27 15:56:18 -04:00
										 |  |  |             hijack_fixes.append(fixes) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |             batch_multipliers.append(multipliers) | 
					
						
							| 
									
										
										
										
											2022-09-27 15:56:18 -04:00
										 |  |  |         return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, text): | 
					
						
							| 
									
										
										
										
											2022-09-29 11:31:48 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if opts.use_old_emphasis_implementation: | 
					
						
							|  |  |  |             batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-27 15:56:18 -04:00
										 |  |  |         self.hijack.fixes = hijack_fixes | 
					
						
							|  |  |  |         self.hijack.comments = hijack_comments | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if len(used_custom_terms) > 0: | 
					
						
							| 
									
										
										
										
											2022-09-29 11:31:48 +03:00
										 |  |  |             self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         tokens = torch.asarray(remade_batch_tokens).to(device) | 
					
						
							|  |  |  |         outputs = self.wrapped.transformer(input_ids=tokens) | 
					
						
							|  |  |  |         z = outputs.last_hidden_state | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise | 
					
						
							| 
									
										
										
										
											2022-09-07 20:40:32 +02:00
										 |  |  |         batch_multipliers = torch.asarray(batch_multipliers).to(device) | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  |         original_mean = z.mean() | 
					
						
							|  |  |  |         z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) | 
					
						
							|  |  |  |         new_mean = z.mean() | 
					
						
							|  |  |  |         z *= original_mean / new_mean | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return z | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class EmbeddingsWithFixes(torch.nn.Module): | 
					
						
							|  |  |  |     def __init__(self, wrapped, embeddings): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.wrapped = wrapped | 
					
						
							|  |  |  |         self.embeddings = embeddings | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, input_ids): | 
					
						
							|  |  |  |         batch_fixes = self.embeddings.fixes | 
					
						
							|  |  |  |         self.embeddings.fixes = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         inputs_embeds = self.wrapped(input_ids) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if batch_fixes is not None: | 
					
						
							|  |  |  |             for fixes, tensor in zip(batch_fixes, inputs_embeds): | 
					
						
							|  |  |  |                 for offset, word in fixes: | 
					
						
							|  |  |  |                     emb = self.embeddings.word_embeddings[word] | 
					
						
							| 
									
										
										
										
											2022-09-21 00:20:11 +03:00
										 |  |  |                     emb_len = min(tensor.shape[0]-offset-1, emb.shape[0]) | 
					
						
							| 
									
										
										
										
											2022-09-20 12:12:31 +03:00
										 |  |  |                     tensor[offset+1:offset+1+emb_len] = self.embeddings.word_embeddings[word][0:emb_len] | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         return inputs_embeds | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-05 02:16:36 +03:00
										 |  |  | def add_circular_option_to_conv_2d(): | 
					
						
							|  |  |  |     conv2d_constructor = torch.nn.Conv2d.__init__ | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-05 02:16:36 +03:00
										 |  |  |     def conv2d_constructor_circular(self, *args, **kwargs): | 
					
						
							|  |  |  |         return conv2d_constructor(self, *args, padding_mode='circular', **kwargs) | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-05 02:16:36 +03:00
										 |  |  |     torch.nn.Conv2d.__init__ = conv2d_constructor_circular | 
					
						
							| 
									
										
										
										
											2022-09-05 01:41:20 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | model_hijack = StableDiffusionModelHijack() |