| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | import math | 
					
						
							| 
									
										
										
										
											2022-10-08 17:02:18 +03:00
										 |  |  | import sys | 
					
						
							|  |  |  | import traceback | 
					
						
							| 
									
										
										
										
											2022-10-10 23:55:48 -04:00
										 |  |  | import importlib | 
					
						
							| 
									
										
										
										
											2022-10-08 17:02:18 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | import torch | 
					
						
							|  |  |  | from torch import einsum | 
					
						
							| 
									
										
										
										
											2022-10-08 16:33:39 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | from ldm.util import default | 
					
						
							|  |  |  | from einops import rearrange | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-11 14:53:02 +03:00
										 |  |  | from modules import shared | 
					
						
							| 
									
										
										
										
											2022-10-11 15:51:22 +03:00
										 |  |  | from modules.hypernetworks import hypernetwork | 
					
						
							| 
									
										
										
										
											2022-10-11 11:09:51 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-07 10:17:52 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-08 19:25:10 +03:00
										 |  |  | if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: | 
					
						
							| 
									
										
										
										
											2022-10-08 17:02:18 +03:00
										 |  |  |     try: | 
					
						
							|  |  |  |         import xformers.ops | 
					
						
							|  |  |  |         shared.xformers_available = True | 
					
						
							|  |  |  |     except Exception: | 
					
						
							|  |  |  |         print("Cannot import xformers", file=sys.stderr) | 
					
						
							|  |  |  |         print(traceback.format_exc(), file=sys.stderr) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion | 
					
						
							|  |  |  | def split_cross_attention_forward_v1(self, x, context=None, mask=None): | 
					
						
							|  |  |  |     h = self.heads | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-08 01:47:02 -04:00
										 |  |  |     q_in = self.to_q(x) | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  |     context = default(context, x) | 
					
						
							| 
									
										
										
										
											2022-10-08 01:47:02 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-11 11:09:51 +03:00
										 |  |  |     context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) | 
					
						
							|  |  |  |     k_in = self.to_k(context_k) | 
					
						
							|  |  |  |     v_in = self.to_v(context_v) | 
					
						
							|  |  |  |     del context, context_k, context_v, x | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-08 01:47:02 -04:00
										 |  |  |     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) | 
					
						
							|  |  |  |     del q_in, k_in, v_in | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) | 
					
						
							|  |  |  |     for i in range(0, q.shape[0], 2): | 
					
						
							|  |  |  |         end = i + 2 | 
					
						
							|  |  |  |         s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) | 
					
						
							|  |  |  |         s1 *= self.scale | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         s2 = s1.softmax(dim=-1) | 
					
						
							|  |  |  |         del s1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) | 
					
						
							|  |  |  |         del s2 | 
					
						
							| 
									
										
										
										
											2022-10-08 01:47:02 -04:00
										 |  |  |     del q, k, v | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | 
					
						
							|  |  |  |     del r1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return self.to_out(r2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-11 11:09:51 +03:00
										 |  |  | # taken from https://github.com/Doggettx/stable-diffusion and modified | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | def split_cross_attention_forward(self, x, context=None, mask=None): | 
					
						
							|  |  |  |     h = self.heads | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     q_in = self.to_q(x) | 
					
						
							|  |  |  |     context = default(context, x) | 
					
						
							| 
									
										
										
										
											2022-10-07 10:17:52 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-11 11:09:51 +03:00
										 |  |  |     context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) | 
					
						
							|  |  |  |     k_in = self.to_k(context_k) | 
					
						
							|  |  |  |     v_in = self.to_v(context_v) | 
					
						
							| 
									
										
										
										
											2022-10-07 10:17:52 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     k_in *= self.scale | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  |     del context, x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) | 
					
						
							|  |  |  |     del q_in, k_in, v_in | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     stats = torch.cuda.memory_stats(q.device) | 
					
						
							|  |  |  |     mem_active = stats['active_bytes.all.current'] | 
					
						
							|  |  |  |     mem_reserved = stats['reserved_bytes.all.current'] | 
					
						
							|  |  |  |     mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | 
					
						
							|  |  |  |     mem_free_torch = mem_reserved - mem_active | 
					
						
							|  |  |  |     mem_free_total = mem_free_cuda + mem_free_torch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gb = 1024 ** 3 | 
					
						
							|  |  |  |     tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() | 
					
						
							|  |  |  |     modifier = 3 if q.element_size() == 2 else 2.5 | 
					
						
							|  |  |  |     mem_required = tensor_size * modifier | 
					
						
							|  |  |  |     steps = 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if mem_required > mem_free_total: | 
					
						
							|  |  |  |         steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) | 
					
						
							|  |  |  |         # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " | 
					
						
							|  |  |  |         #       f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if steps > 64: | 
					
						
							|  |  |  |         max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 | 
					
						
							|  |  |  |         raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' | 
					
						
							|  |  |  |                            f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | 
					
						
							|  |  |  |     for i in range(0, q.shape[1], slice_size): | 
					
						
							|  |  |  |         end = i + slice_size | 
					
						
							|  |  |  |         s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         s2 = s1.softmax(dim=-1, dtype=q.dtype) | 
					
						
							|  |  |  |         del s1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) | 
					
						
							|  |  |  |         del s2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     del q, k, v | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | 
					
						
							|  |  |  |     del r1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return self.to_out(r2) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-10 22:48:54 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-10 23:55:48 -04:00
										 |  |  | def check_for_psutil(): | 
					
						
							|  |  |  |     try: | 
					
						
							|  |  |  |         spec = importlib.util.find_spec('psutil') | 
					
						
							|  |  |  |         return spec is not None | 
					
						
							|  |  |  |     except ModuleNotFoundError: | 
					
						
							|  |  |  |         return False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | invokeAI_mps_available = check_for_psutil() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # -- Taken from https://github.com/invoke-ai/InvokeAI -- | 
					
						
							|  |  |  | if invokeAI_mps_available: | 
					
						
							|  |  |  |     import psutil | 
					
						
							|  |  |  |     mem_total_gb = psutil.virtual_memory().total // (1 << 30) | 
					
						
							| 
									
										
										
										
											2022-10-10 22:48:54 -04:00
										 |  |  | 
 | 
					
						
							|  |  |  | def einsum_op_compvis(q, k, v): | 
					
						
							|  |  |  |     s = einsum('b i d, b j d -> b i j', q, k) | 
					
						
							|  |  |  |     s = s.softmax(dim=-1, dtype=s.dtype) | 
					
						
							|  |  |  |     return einsum('b i j, b j d -> b i d', s, v) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def einsum_op_slice_0(q, k, v, slice_size): | 
					
						
							|  |  |  |     r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | 
					
						
							|  |  |  |     for i in range(0, q.shape[0], slice_size): | 
					
						
							|  |  |  |         end = i + slice_size | 
					
						
							|  |  |  |         r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end]) | 
					
						
							|  |  |  |     return r | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def einsum_op_slice_1(q, k, v, slice_size): | 
					
						
							|  |  |  |     r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | 
					
						
							|  |  |  |     for i in range(0, q.shape[1], slice_size): | 
					
						
							|  |  |  |         end = i + slice_size | 
					
						
							|  |  |  |         r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v) | 
					
						
							|  |  |  |     return r | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def einsum_op_mps_v1(q, k, v): | 
					
						
							|  |  |  |     if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096 | 
					
						
							|  |  |  |         return einsum_op_compvis(q, k, v) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) | 
					
						
							|  |  |  |         return einsum_op_slice_1(q, k, v, slice_size) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def einsum_op_mps_v2(q, k, v): | 
					
						
							|  |  |  |     if mem_total_gb > 8 and q.shape[1] <= 4096: | 
					
						
							|  |  |  |         return einsum_op_compvis(q, k, v) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         return einsum_op_slice_0(q, k, v, 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def einsum_op_tensor_mem(q, k, v, max_tensor_mb): | 
					
						
							|  |  |  |     size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20) | 
					
						
							|  |  |  |     if size_mb <= max_tensor_mb: | 
					
						
							|  |  |  |         return einsum_op_compvis(q, k, v) | 
					
						
							|  |  |  |     div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length() | 
					
						
							|  |  |  |     if div <= q.shape[0]: | 
					
						
							|  |  |  |         return einsum_op_slice_0(q, k, v, q.shape[0] // div) | 
					
						
							|  |  |  |     return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-11 03:32:11 -04:00
										 |  |  | def einsum_op_cuda(q, k, v): | 
					
						
							|  |  |  |     stats = torch.cuda.memory_stats(q.device) | 
					
						
							|  |  |  |     mem_active = stats['active_bytes.all.current'] | 
					
						
							|  |  |  |     mem_reserved = stats['reserved_bytes.all.current'] | 
					
						
							|  |  |  |     mem_free_cuda, _ = torch.cuda.mem_get_info(q.device) | 
					
						
							|  |  |  |     mem_free_torch = mem_reserved - mem_active | 
					
						
							|  |  |  |     mem_free_total = mem_free_cuda + mem_free_torch | 
					
						
							|  |  |  |     # Divide factor of safety as there's copying and fragmentation | 
					
						
							| 
									
										
										
										
											2022-10-18 20:28:28 -03:00
										 |  |  |     return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) | 
					
						
							| 
									
										
										
										
											2022-10-11 03:32:11 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-10 22:48:54 -04:00
										 |  |  | def einsum_op(q, k, v): | 
					
						
							| 
									
										
										
										
											2022-10-11 03:32:11 -04:00
										 |  |  |     if q.device.type == 'cuda': | 
					
						
							|  |  |  |         return einsum_op_cuda(q, k, v) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-10 22:48:54 -04:00
										 |  |  |     if q.device.type == 'mps': | 
					
						
							|  |  |  |         if mem_total_gb >= 32: | 
					
						
							|  |  |  |             return einsum_op_mps_v1(q, k, v) | 
					
						
							|  |  |  |         return einsum_op_mps_v2(q, k, v) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Smaller slices are faster due to L2/L3/SLC caches. | 
					
						
							|  |  |  |     # Tested on i7 with 8MB L3 cache. | 
					
						
							|  |  |  |     return einsum_op_tensor_mem(q, k, v, 32) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): | 
					
						
							|  |  |  |     h = self.heads | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     q = self.to_q(x) | 
					
						
							|  |  |  |     context = default(context, x) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-11 05:13:17 -04:00
										 |  |  |     context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) | 
					
						
							|  |  |  |     k = self.to_k(context_k) * self.scale | 
					
						
							|  |  |  |     v = self.to_v(context_v) | 
					
						
							|  |  |  |     del context, context_k, context_v, x | 
					
						
							| 
									
										
										
										
											2022-10-10 22:48:54 -04:00
										 |  |  | 
 | 
					
						
							|  |  |  |     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | 
					
						
							|  |  |  |     r = einsum_op(q, k, v) | 
					
						
							|  |  |  |     return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-10 23:55:48 -04:00
										 |  |  | # -- End of code from https://github.com/invoke-ai/InvokeAI -- | 
					
						
							| 
									
										
										
										
											2022-10-10 22:48:54 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-07 05:21:49 +03:00
										 |  |  | def xformers_attention_forward(self, x, context=None, mask=None): | 
					
						
							|  |  |  |     h = self.heads | 
					
						
							|  |  |  |     q_in = self.to_q(x) | 
					
						
							|  |  |  |     context = default(context, x) | 
					
						
							| 
									
										
										
										
											2022-10-11 11:09:51 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) | 
					
						
							|  |  |  |     k_in = self.to_k(context_k) | 
					
						
							|  |  |  |     v_in = self.to_v(context_v) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-08 04:09:18 +03:00
										 |  |  |     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) | 
					
						
							| 
									
										
										
										
											2022-10-07 05:21:49 +03:00
										 |  |  |     del q_in, k_in, v_in | 
					
						
							| 
									
										
										
										
											2022-10-08 04:09:18 +03:00
										 |  |  |     out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) | 
					
						
							| 
									
										
										
										
											2022-10-07 05:21:49 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-08 04:09:18 +03:00
										 |  |  |     out = rearrange(out, 'b n h d -> b n (h d)', h=h) | 
					
						
							| 
									
										
										
										
											2022-10-07 05:21:49 +03:00
										 |  |  |     return self.to_out(out) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-10-02 15:03:39 +03:00
										 |  |  | def cross_attention_attnblock_forward(self, x): | 
					
						
							|  |  |  |         h_ = x | 
					
						
							|  |  |  |         h_ = self.norm(h_) | 
					
						
							|  |  |  |         q1 = self.q(h_) | 
					
						
							|  |  |  |         k1 = self.k(h_) | 
					
						
							|  |  |  |         v = self.v(h_) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # compute attention | 
					
						
							|  |  |  |         b, c, h, w = q1.shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         q2 = q1.reshape(b, c, h*w) | 
					
						
							|  |  |  |         del q1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         q = q2.permute(0, 2, 1)   # b,hw,c | 
					
						
							|  |  |  |         del q2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         k = k1.reshape(b, c, h*w) # b,c,hw | 
					
						
							|  |  |  |         del k1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         h_ = torch.zeros_like(k, device=q.device) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         stats = torch.cuda.memory_stats(q.device) | 
					
						
							|  |  |  |         mem_active = stats['active_bytes.all.current'] | 
					
						
							|  |  |  |         mem_reserved = stats['reserved_bytes.all.current'] | 
					
						
							|  |  |  |         mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | 
					
						
							|  |  |  |         mem_free_torch = mem_reserved - mem_active | 
					
						
							|  |  |  |         mem_free_total = mem_free_cuda + mem_free_torch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() | 
					
						
							|  |  |  |         mem_required = tensor_size * 2.5 | 
					
						
							|  |  |  |         steps = 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if mem_required > mem_free_total: | 
					
						
							|  |  |  |             steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | 
					
						
							|  |  |  |         for i in range(0, q.shape[1], slice_size): | 
					
						
							|  |  |  |             end = i + slice_size | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             w1 = torch.bmm(q[:, i:end], k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | 
					
						
							|  |  |  |             w2 = w1 * (int(c)**(-0.5)) | 
					
						
							|  |  |  |             del w1 | 
					
						
							|  |  |  |             w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) | 
					
						
							|  |  |  |             del w2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # attend to values | 
					
						
							|  |  |  |             v1 = v.reshape(b, c, h*w) | 
					
						
							|  |  |  |             w4 = w3.permute(0, 2, 1)   # b,hw,hw (first hw of k, second of q) | 
					
						
							|  |  |  |             del w3 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             h_[:, :, i:end] = torch.bmm(v1, w4)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | 
					
						
							|  |  |  |             del v1, w4 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         h2 = h_.reshape(b, c, h, w) | 
					
						
							|  |  |  |         del h_ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         h3 = self.proj_out(h2) | 
					
						
							|  |  |  |         del h2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         h3 += x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return h3 | 
					
						
							| 
									
										
										
										
											2022-10-08 11:55:02 +03:00
										 |  |  |      | 
					
						
							| 
									
										
										
										
											2022-10-17 22:18:59 +03:00
										 |  |  | def xformers_attnblock_forward(self, x): | 
					
						
							|  |  |  |     try: | 
					
						
							|  |  |  |         h_ = x | 
					
						
							|  |  |  |         h_ = self.norm(h_) | 
					
						
							|  |  |  |         q = self.q(h_) | 
					
						
							|  |  |  |         k = self.k(h_) | 
					
						
							|  |  |  |         v = self.v(h_) | 
					
						
							|  |  |  |         b, c, h, w = q.shape | 
					
						
							|  |  |  |         q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) | 
					
						
							| 
									
										
										
										
											2022-10-18 00:02:50 +03:00
										 |  |  |         q = q.contiguous() | 
					
						
							|  |  |  |         k = k.contiguous() | 
					
						
							|  |  |  |         v = v.contiguous() | 
					
						
							| 
									
										
										
										
											2022-10-17 22:18:59 +03:00
										 |  |  |         out = xformers.ops.memory_efficient_attention(q, k, v) | 
					
						
							|  |  |  |         out = rearrange(out, 'b (h w) c -> b c h w', h=h) | 
					
						
							|  |  |  |         out = self.proj_out(out) | 
					
						
							|  |  |  |         return x + out | 
					
						
							|  |  |  |     except NotImplementedError: | 
					
						
							|  |  |  |         return cross_attention_attnblock_forward(self, x) |