| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  | import contextlib | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | import os | 
					
						
							|  |  |  | import sys | 
					
						
							|  |  |  | import traceback | 
					
						
							|  |  |  | from collections import namedtuple | 
					
						
							|  |  |  | import re | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from torchvision import transforms | 
					
						
							|  |  |  | from torchvision.transforms.functional import InterpolationMode | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import modules.shared as shared | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  | from modules import devices, paths, lowvram | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | blip_image_eval_size = 384 | 
					
						
							|  |  |  | blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth' | 
					
						
							|  |  |  | clip_model_name = 'ViT-L/14' | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Category = namedtuple("Category", ["name", "topn", "items"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | re_topn = re.compile(r"\.top(\d+)\.") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class InterrogateModels: | 
					
						
							|  |  |  |     blip_model = None | 
					
						
							|  |  |  |     clip_model = None | 
					
						
							|  |  |  |     clip_preprocess = None | 
					
						
							|  |  |  |     categories = None | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |     dtype = None | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def __init__(self, content_dir): | 
					
						
							|  |  |  |         self.categories = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if os.path.exists(content_dir): | 
					
						
							|  |  |  |             for filename in os.listdir(content_dir): | 
					
						
							|  |  |  |                 m = re_topn.search(filename) | 
					
						
							|  |  |  |                 topn = 1 if m is None else int(m.group(1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file: | 
					
						
							|  |  |  |                     lines = [x.strip() for x in file.readlines()] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 self.categories.append(Category(name=filename, topn=topn, items=lines)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def load_blip_model(self): | 
					
						
							|  |  |  |         import models.blip | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) | 
					
						
							|  |  |  |         blip_model.eval() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return blip_model | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def load_clip_model(self): | 
					
						
							|  |  |  |         import clip | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         model, preprocess = clip.load(clip_model_name) | 
					
						
							|  |  |  |         model.eval() | 
					
						
							|  |  |  |         model = model.to(shared.device) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return model, preprocess | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def load(self): | 
					
						
							|  |  |  |         if self.blip_model is None: | 
					
						
							|  |  |  |             self.blip_model = self.load_blip_model() | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |             if not shared.cmd_opts.no_half: | 
					
						
							|  |  |  |                 self.blip_model = self.blip_model.half() | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.blip_model = self.blip_model.to(shared.device) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if self.clip_model is None: | 
					
						
							|  |  |  |             self.clip_model, self.clip_preprocess = self.load_clip_model() | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |             if not shared.cmd_opts.no_half: | 
					
						
							|  |  |  |                 self.clip_model = self.clip_model.half() | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.clip_model = self.clip_model.to(shared.device) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |         self.dtype = next(self.clip_model.parameters()).dtype | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  |     def send_clip_to_ram(self): | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  |         if not shared.opts.interrogate_keep_models_in_memory: | 
					
						
							|  |  |  |             if self.clip_model is not None: | 
					
						
							|  |  |  |                 self.clip_model = self.clip_model.to(devices.cpu) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  |     def send_blip_to_ram(self): | 
					
						
							|  |  |  |         if not shared.opts.interrogate_keep_models_in_memory: | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  |             if self.blip_model is not None: | 
					
						
							|  |  |  |                 self.blip_model = self.blip_model.to(devices.cpu) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  |     def unload(self): | 
					
						
							|  |  |  |         self.send_clip_to_ram() | 
					
						
							|  |  |  |         self.send_blip_to_ram() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         devices.torch_gc() | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def rank(self, image_features, text_array, top_count=1): | 
					
						
							|  |  |  |         import clip | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  |         if shared.opts.interrogate_clip_dict_limit != 0: | 
					
						
							|  |  |  |             text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)] | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  |         top_count = min(top_count, len(text_array)) | 
					
						
							| 
									
										
										
										
											2022-09-15 15:13:06 +03:00
										 |  |  |         text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device) | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |         text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  |         text_features /= text_features.norm(dim=-1, keepdim=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         similarity = torch.zeros((1, len(text_array))).to(shared.device) | 
					
						
							|  |  |  |         for i in range(image_features.shape[0]): | 
					
						
							|  |  |  |             similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) | 
					
						
							|  |  |  |         similarity /= image_features.shape[0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) | 
					
						
							|  |  |  |         return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def generate_caption(self, pil_image): | 
					
						
							|  |  |  |         gpu_image = transforms.Compose([ | 
					
						
							|  |  |  |             transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), | 
					
						
							|  |  |  |             transforms.ToTensor(), | 
					
						
							|  |  |  |             transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |         ])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device) | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return caption[0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def interrogate(self, pil_image): | 
					
						
							|  |  |  |         res = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         try: | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |             if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: | 
					
						
							|  |  |  |                 lowvram.send_everything_to_cpu() | 
					
						
							|  |  |  |                 devices.torch_gc() | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  |             self.load() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             caption = self.generate_caption(pil_image) | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  |             self.send_blip_to_ram() | 
					
						
							|  |  |  |             devices.torch_gc() | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  |             res = caption | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  |             cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device) | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |             precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext | 
					
						
							|  |  |  |             with torch.no_grad(), precision_scope("cuda"): | 
					
						
							| 
									
										
										
										
											2022-09-12 11:55:27 +03:00
										 |  |  |                 image_features = self.clip_model.encode_image(cilp_image).type(self.dtype) | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |                 image_features /= image_features.norm(dim=-1, keepdim=True) | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |                 if shared.opts.interrogate_use_builtin_artists: | 
					
						
							|  |  |  |                     artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0] | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |                     res += ", " + artist[0] | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-11 23:24:24 +03:00
										 |  |  |                 for name, topn, items in self.categories: | 
					
						
							|  |  |  |                     matches = self.rank(image_features, items, top_count=topn) | 
					
						
							|  |  |  |                     for match, score in matches: | 
					
						
							|  |  |  |                         res += ", " + match | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         except Exception: | 
					
						
							|  |  |  |             print(f"Error interrogating", file=sys.stderr) | 
					
						
							|  |  |  |             print(traceback.format_exc(), file=sys.stderr) | 
					
						
							| 
									
										
										
										
											2022-09-12 12:26:37 +03:00
										 |  |  |             res += "<error>" | 
					
						
							| 
									
										
										
										
											2022-09-11 18:48:36 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.unload() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return res |