| 
									
										
										
										
											2022-09-14 19:41:55 +03:00
										 |  |  | from collections import namedtuple | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  | import numpy as np | 
					
						
							|  |  |  | from tqdm import trange | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import modules.scripts as scripts | 
					
						
							|  |  |  | import gradio as gr | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-15 22:39:46 +03:00
										 |  |  | from modules import processing, shared, sd_samplers, prompt_parser | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  | from modules.processing import Processed | 
					
						
							|  |  |  | from modules.shared import opts, cmd_opts, state | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import k_diffusion as K | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from PIL import Image | 
					
						
							|  |  |  | from torch import autocast | 
					
						
							|  |  |  | from einops import rearrange, repeat | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def find_noise_for_image(p, cond, uncond, cfg_scale, steps): | 
					
						
							|  |  |  |     x = p.init_latent | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     s_in = x.new_ones([x.shape[0]]) | 
					
						
							|  |  |  |     dnw = K.external.CompVisDenoiser(shared.sd_model) | 
					
						
							|  |  |  |     sigmas = dnw.get_sigmas(steps).flip(0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     shared.state.sampling_steps = steps | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for i in trange(1, len(sigmas)): | 
					
						
							|  |  |  |         shared.state.sampling_step += 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         x_in = torch.cat([x] * 2) | 
					
						
							|  |  |  |         sigma_in = torch.cat([sigmas[i] * s_in] * 2) | 
					
						
							|  |  |  |         cond_in = torch.cat([uncond, cond]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] | 
					
						
							|  |  |  |         t = dnw.sigma_to_t(sigma_in) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in) | 
					
						
							|  |  |  |         denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         d = (x - denoised) / sigmas[i] | 
					
						
							|  |  |  |         dt = sigmas[i] - sigmas[i - 1] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         x = x + d * dt | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         sd_samplers.store_latent(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # This shouldn't be necessary, but solved some VRAM issues | 
					
						
							|  |  |  |         del x_in, sigma_in, cond_in, c_out, c_in, t, | 
					
						
							|  |  |  |         del eps, denoised_uncond, denoised_cond, denoised, d, dt | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     shared.state.nextjob() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return x / x.std() | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-14 19:41:55 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-26 21:13:23 +01:00
										 |  |  | Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736 | 
					
						
							|  |  |  | def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps): | 
					
						
							|  |  |  |     x = p.init_latent | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     s_in = x.new_ones([x.shape[0]]) | 
					
						
							|  |  |  |     dnw = K.external.CompVisDenoiser(shared.sd_model) | 
					
						
							|  |  |  |     sigmas = dnw.get_sigmas(steps).flip(0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     shared.state.sampling_steps = steps | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for i in trange(1, len(sigmas)): | 
					
						
							|  |  |  |         shared.state.sampling_step += 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         x_in = torch.cat([x] * 2) | 
					
						
							|  |  |  |         sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2) | 
					
						
							|  |  |  |         cond_in = torch.cat([uncond, cond]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if i == 1: | 
					
						
							|  |  |  |             t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2)) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             t = dnw.sigma_to_t(sigma_in) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in) | 
					
						
							|  |  |  |         denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if i == 1: | 
					
						
							|  |  |  |             d = (x - denoised) / (2 * sigmas[i]) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             d = (x - denoised) / sigmas[i - 1] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         dt = sigmas[i] - sigmas[i - 1] | 
					
						
							|  |  |  |         x = x + d * dt | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         sd_samplers.store_latent(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # This shouldn't be necessary, but solved some VRAM issues | 
					
						
							|  |  |  |         del x_in, sigma_in, cond_in, c_out, c_in, t, | 
					
						
							|  |  |  |         del eps, denoised_uncond, denoised_cond, denoised, d, dt | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     shared.state.nextjob() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return x / sigmas[-1] | 
					
						
							| 
									
										
										
										
											2022-09-14 19:41:55 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | class Script(scripts.Script): | 
					
						
							| 
									
										
										
										
											2022-09-14 19:41:55 +03:00
										 |  |  |     def __init__(self): | 
					
						
							|  |  |  |         self.cache = None | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  |     def title(self): | 
					
						
							|  |  |  |         return "img2img alternative test" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def show(self, is_img2img): | 
					
						
							|  |  |  |         return is_img2img | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def ui(self, is_img2img): | 
					
						
							|  |  |  |         original_prompt = gr.Textbox(label="Original prompt", lines=1) | 
					
						
							| 
									
										
										
										
											2022-09-16 19:24:48 +03:00
										 |  |  |         original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1) | 
					
						
							| 
									
										
										
										
											2022-09-14 19:41:55 +03:00
										 |  |  |         cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0) | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  |         st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50) | 
					
						
							| 
									
										
										
										
											2022-09-20 19:07:09 +03:00
										 |  |  |         randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0) | 
					
						
							| 
									
										
										
										
											2022-09-26 21:13:23 +01:00
										 |  |  |         sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False) | 
					
						
							|  |  |  |         return [original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment] | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-26 21:13:23 +01:00
										 |  |  |     def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment): | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  |         p.batch_size = 1 | 
					
						
							|  |  |  |         p.batch_count = 1 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-20 19:07:09 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-19 18:23:51 +03:00
										 |  |  |         def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): | 
					
						
							| 
									
										
										
										
											2022-09-14 19:41:55 +03:00
										 |  |  |             lat = (p.init_latent.cpu().numpy() * 10).astype(int) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-26 21:13:23 +01:00
										 |  |  |             same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \ | 
					
						
							|  |  |  |                                 and self.cache.original_prompt == original_prompt \ | 
					
						
							|  |  |  |                                 and self.cache.original_negative_prompt == original_negative_prompt \ | 
					
						
							|  |  |  |                                 and self.cache.sigma_adjustment == sigma_adjustment | 
					
						
							| 
									
										
										
										
											2022-09-14 19:41:55 +03:00
										 |  |  |             same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100 | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-14 19:41:55 +03:00
										 |  |  |             if same_everything: | 
					
						
							| 
									
										
										
										
											2022-09-16 06:40:43 +00:00
										 |  |  |                 rec_noise = self.cache.noise | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  |             else: | 
					
						
							|  |  |  |                 shared.state.job_count += 1 | 
					
						
							|  |  |  |                 cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt]) | 
					
						
							| 
									
										
										
										
											2022-09-16 19:24:48 +03:00
										 |  |  |                 uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt]) | 
					
						
							| 
									
										
										
										
											2022-09-26 21:13:23 +01:00
										 |  |  |                 if sigma_adjustment: | 
					
						
							|  |  |  |                     rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st) | 
					
						
							|  |  |  |                 else: | 
					
						
							|  |  |  |                     rec_noise = find_noise_for_image(p, cond, uncond, cfg, st) | 
					
						
							|  |  |  |                 self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment) | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-16 06:40:43 +00:00
										 |  |  |             rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])]) | 
					
						
							|  |  |  |              | 
					
						
							|  |  |  |             combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5) | 
					
						
							|  |  |  |              | 
					
						
							| 
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 |  |  |             sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model) | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-16 06:40:43 +00:00
										 |  |  |             sigmas = sampler.model_wrap.get_sigmas(p.steps) | 
					
						
							|  |  |  |              | 
					
						
							| 
									
										
										
										
											2022-09-19 18:23:51 +03:00
										 |  |  |             noise_dt = combined_noise - (p.init_latent / sigmas[0]) | 
					
						
							| 
									
										
										
										
											2022-09-16 06:40:43 +00:00
										 |  |  |              | 
					
						
							| 
									
										
										
										
											2022-09-16 06:40:43 +00:00
										 |  |  |             p.seed = p.seed + 1 | 
					
						
							| 
									
										
										
										
											2022-09-16 06:40:43 +00:00
										 |  |  |              | 
					
						
							|  |  |  |             return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  |         p.sample = sample_extra | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-20 19:07:09 +03:00
										 |  |  |         p.extra_generation_params["Decode prompt"] = original_prompt | 
					
						
							|  |  |  |         p.extra_generation_params["Decode negative prompt"] = original_negative_prompt | 
					
						
							|  |  |  |         p.extra_generation_params["Decode CFG scale"] = cfg | 
					
						
							|  |  |  |         p.extra_generation_params["Decode steps"] = st | 
					
						
							|  |  |  |         p.extra_generation_params["Randomness"] = randomness | 
					
						
							| 
									
										
										
										
											2022-09-26 21:13:23 +01:00
										 |  |  |         p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment | 
					
						
							| 
									
										
										
										
											2022-09-14 11:08:36 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-12 01:55:34 +03:00
										 |  |  |         processed = processing.process_images(p) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return processed | 
					
						
							|  |  |  | 
 |