| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | import math | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  | from collections import namedtuple | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 07:48:44 +03:00
										 |  |  | from modules import prompt_parser, devices, sd_hijack | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | from modules.shared import opts | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | class PromptChunk: | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt. | 
					
						
							|  |  |  |     If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary. | 
					
						
							|  |  |  |     Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token, | 
					
						
							|  |  |  |     so just 75 tokens from prompt. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __init__(self): | 
					
						
							|  |  |  |         self.tokens = [] | 
					
						
							|  |  |  |         self.multipliers = [] | 
					
						
							|  |  |  |         self.fixes = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding']) | 
					
						
							| 
									
										
										
										
											2023-01-07 07:48:44 +03:00
										 |  |  | """An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt
 | 
					
						
							|  |  |  | chunk. Thos objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally | 
					
						
							|  |  |  | are applied by sd_hijack.EmbeddingsWithFixes's forward function.""" | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): | 
					
						
							| 
									
										
										
										
											2023-01-07 07:48:44 +03:00
										 |  |  |     """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
 | 
					
						
							|  |  |  |     have unlimited prompt length and assign weights to tokens in prompt. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |     def __init__(self, wrapped, hijack): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							| 
									
										
										
										
											2023-01-07 07:48:44 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         self.wrapped = wrapped | 
					
						
							| 
									
										
										
										
											2023-01-07 07:48:44 +03:00
										 |  |  |         """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
 | 
					
						
							|  |  |  |         depending on model."""
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.hijack: sd_hijack.StableDiffusionModelHijack = hijack | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         self.chunk_length = 75 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def empty_chunk(self): | 
					
						
							|  |  |  |         """creates an empty PromptChunk and returns it""" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         chunk = PromptChunk() | 
					
						
							|  |  |  |         chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) | 
					
						
							|  |  |  |         chunk.multipliers = [1.0] * (self.chunk_length + 2) | 
					
						
							|  |  |  |         return chunk | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def get_target_prompt_token_count(self, token_count): | 
					
						
							|  |  |  |         """returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented""" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def tokenize(self, texts): | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         """Converts a batch of texts into a batch of token ids""" | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         raise NotImplementedError | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def encode_with_transformers(self, tokens): | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         """
 | 
					
						
							|  |  |  |         converts a batch of token ids (in python lists) into a single tensor with numeric respresentation of those tokens; | 
					
						
							|  |  |  |         All python lists with tokens are assumed to have same length, usually 77. | 
					
						
							|  |  |  |         if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on | 
					
						
							| 
									
										
										
										
											2023-01-07 07:48:44 +03:00
										 |  |  |         model - can be 768 and 1024. | 
					
						
							|  |  |  |         Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None). | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         raise NotImplementedError | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def encode_embedding_init_text(self, init_text, nvpt): | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         """Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through
 | 
					
						
							|  |  |  |         transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned."""
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         raise NotImplementedError | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |     def tokenize_line(self, line): | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  |         this transforms a single prompt into a list of PromptChunk objects - as many as needed to | 
					
						
							|  |  |  |         represent the prompt. | 
					
						
							|  |  |  |         Returns the list and the total number of tokens in the prompt. | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         if opts.enable_emphasis: | 
					
						
							|  |  |  |             parsed = prompt_parser.parse_prompt_attention(line) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             parsed = [[line, 1.0]] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         tokenized = self.tokenize([text for text, _ in parsed]) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         chunks = [] | 
					
						
							|  |  |  |         chunk = PromptChunk() | 
					
						
							|  |  |  |         token_count = 0 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         last_comma = -1 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-15 22:29:53 +03:00
										 |  |  |         def next_chunk(is_last=False): | 
					
						
							|  |  |  |             """puts current chunk into the list of results and produces the next one - empty;
 | 
					
						
							|  |  |  |             if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count""" | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |             nonlocal token_count | 
					
						
							|  |  |  |             nonlocal last_comma | 
					
						
							|  |  |  |             nonlocal chunk | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-15 22:29:53 +03:00
										 |  |  |             if is_last: | 
					
						
							|  |  |  |                 token_count += len(chunk.tokens) | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 token_count += self.chunk_length | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |             to_add = self.chunk_length - len(chunk.tokens) | 
					
						
							|  |  |  |             if to_add > 0: | 
					
						
							|  |  |  |                 chunk.tokens += [self.id_end] * to_add | 
					
						
							|  |  |  |                 chunk.multipliers += [1.0] * to_add | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |             chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] | 
					
						
							|  |  |  |             chunk.multipliers = [1.0] + chunk.multipliers + [1.0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             last_comma = -1 | 
					
						
							|  |  |  |             chunks.append(chunk) | 
					
						
							|  |  |  |             chunk = PromptChunk() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for tokens, (text, weight) in zip(tokenized, parsed): | 
					
						
							| 
									
										
										
										
											2023-01-15 22:29:53 +03:00
										 |  |  |             if text == 'BREAK' and weight == -1: | 
					
						
							|  |  |  |                 next_chunk() | 
					
						
							|  |  |  |                 continue | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |             position = 0 | 
					
						
							|  |  |  |             while position < len(tokens): | 
					
						
							|  |  |  |                 token = tokens[position] | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |                 if token == self.comma_token: | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                     last_comma = len(chunk.tokens) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 # this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack | 
					
						
							| 
									
										
										
										
											2023-01-07 07:48:44 +03:00
										 |  |  |                 # is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next. | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                 elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack: | 
					
						
							|  |  |  |                     break_location = last_comma + 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     reloc_tokens = chunk.tokens[break_location:] | 
					
						
							|  |  |  |                     reloc_mults = chunk.multipliers[break_location:] | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                     chunk.tokens = chunk.tokens[:break_location] | 
					
						
							|  |  |  |                     chunk.multipliers = chunk.multipliers[:break_location] | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                     next_chunk() | 
					
						
							|  |  |  |                     chunk.tokens = reloc_tokens | 
					
						
							|  |  |  |                     chunk.multipliers = reloc_mults | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                 if len(chunk.tokens) == self.chunk_length: | 
					
						
							|  |  |  |                     next_chunk() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |                 if embedding is None: | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                     chunk.tokens.append(token) | 
					
						
							|  |  |  |                     chunk.multipliers.append(weight) | 
					
						
							|  |  |  |                     position += 1 | 
					
						
							|  |  |  |                     continue | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 emb_len = int(embedding.vec.shape[0]) | 
					
						
							|  |  |  |                 if len(chunk.tokens) + emb_len > self.chunk_length: | 
					
						
							|  |  |  |                     next_chunk() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 chunk.tokens += [0] * emb_len | 
					
						
							|  |  |  |                 chunk.multipliers += [weight] * emb_len | 
					
						
							|  |  |  |                 position += embedding_length_in_tokens | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-06-02 14:58:10 +03:00
										 |  |  |         if chunk.tokens or not chunks: | 
					
						
							| 
									
										
										
										
											2023-01-15 22:29:53 +03:00
										 |  |  |             next_chunk(is_last=True) | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         return chunks, token_count | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def process_texts(self, texts): | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  |         Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum | 
					
						
							|  |  |  |         length, in tokens, of all texts. | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         token_count = 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         cache = {} | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         batch_chunks = [] | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         for line in texts: | 
					
						
							|  |  |  |             if line in cache: | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                 chunks = cache[line] | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |             else: | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                 chunks, current_token_count = self.tokenize_line(line) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |                 token_count = max(current_token_count, token_count) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                 cache[line] = chunks | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |             batch_chunks.append(chunks) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         return batch_chunks, token_count | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |     def forward(self, texts): | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  |         Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. | 
					
						
							|  |  |  |         Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will | 
					
						
							|  |  |  |         be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024. | 
					
						
							|  |  |  |         An example shape returned by this function can be: (2, 77, 768). | 
					
						
							|  |  |  |         Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet | 
					
						
							|  |  |  |         is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" | 
					
						
							|  |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         if opts.use_old_emphasis_implementation: | 
					
						
							|  |  |  |             import modules.sd_hijack_clip_old | 
					
						
							|  |  |  |             return modules.sd_hijack_clip_old.forward_old(self, texts) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         batch_chunks, token_count = self.process_texts(texts) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         used_embeddings = {} | 
					
						
							|  |  |  |         chunk_count = max([len(x) for x in batch_chunks]) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         zs = [] | 
					
						
							|  |  |  |         for i in range(chunk_count): | 
					
						
							|  |  |  |             batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             tokens = [x.tokens for x in batch_chunk] | 
					
						
							|  |  |  |             multipliers = [x.multipliers for x in batch_chunk] | 
					
						
							|  |  |  |             self.hijack.fixes = [x.fixes for x in batch_chunk] | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |             for fixes in self.hijack.fixes: | 
					
						
							| 
									
										
										
										
											2023-05-10 21:21:32 +03:00
										 |  |  |                 for _position, embedding in fixes: | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |                     used_embeddings[embedding.name] = embedding | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             z = self.process_tokens(tokens, multipliers) | 
					
						
							|  |  |  |             zs.append(z) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if len(used_embeddings) > 0: | 
					
						
							|  |  |  |             embeddings_list = ", ".join([f'{name} [{embedding.checksum()}]' for name, embedding in used_embeddings.items()]) | 
					
						
							|  |  |  |             self.hijack.comments.append(f"Used embeddings: {embeddings_list}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return torch.hstack(zs) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def process_tokens(self, remade_batch_tokens, batch_multipliers): | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  |         sends one single prompt chunk to be encoded by transformers neural network. | 
					
						
							|  |  |  |         remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually | 
					
						
							|  |  |  |         there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens. | 
					
						
							|  |  |  |         Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier | 
					
						
							|  |  |  |         corresponds to one token. | 
					
						
							|  |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         tokens = torch.asarray(remade_batch_tokens).to(devices.device) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         # this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones. | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         if self.id_end != self.id_pad: | 
					
						
							|  |  |  |             for batch_pos in range(len(remade_batch_tokens)): | 
					
						
							|  |  |  |                 index = remade_batch_tokens[batch_pos].index(self.id_end) | 
					
						
							|  |  |  |                 tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         z = self.encode_with_transformers(tokens) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise | 
					
						
							| 
									
										
										
										
											2023-01-07 01:45:28 +03:00
										 |  |  |         batch_multipliers = torch.asarray(batch_multipliers).to(devices.device) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         original_mean = z.mean() | 
					
						
							| 
									
										
										
										
											2023-01-07 07:04:59 -05:00
										 |  |  |         z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         new_mean = z.mean() | 
					
						
							| 
									
										
										
										
											2023-01-07 07:04:59 -05:00
										 |  |  |         z = z * (original_mean / new_mean) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         return z | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): | 
					
						
							|  |  |  |     def __init__(self, wrapped, hijack): | 
					
						
							|  |  |  |         super().__init__(wrapped, hijack) | 
					
						
							|  |  |  |         self.tokenizer = wrapped.tokenizer | 
					
						
							| 
									
										
										
										
											2022-12-31 18:06:35 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         vocab = self.tokenizer.get_vocab() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.comma_token = vocab.get(',</w>', None) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.token_mults = {} | 
					
						
							| 
									
										
										
										
											2022-12-31 18:06:35 +03:00
										 |  |  |         tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  |         for text, ident in tokens_with_parens: | 
					
						
							|  |  |  |             mult = 1.0 | 
					
						
							|  |  |  |             for c in text: | 
					
						
							|  |  |  |                 if c == '[': | 
					
						
							|  |  |  |                     mult /= 1.1 | 
					
						
							|  |  |  |                 if c == ']': | 
					
						
							|  |  |  |                     mult *= 1.1 | 
					
						
							|  |  |  |                 if c == '(': | 
					
						
							|  |  |  |                     mult *= 1.1 | 
					
						
							|  |  |  |                 if c == ')': | 
					
						
							|  |  |  |                     mult /= 1.1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             if mult != 1.0: | 
					
						
							|  |  |  |                 self.token_mults[ident] = mult | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.id_start = self.wrapped.tokenizer.bos_token_id | 
					
						
							|  |  |  |         self.id_end = self.wrapped.tokenizer.eos_token_id | 
					
						
							|  |  |  |         self.id_pad = self.id_end | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def tokenize(self, texts): | 
					
						
							|  |  |  |         tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return tokenized | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def encode_with_transformers(self, tokens): | 
					
						
							|  |  |  |         outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if opts.CLIP_stop_at_last_layers > 1: | 
					
						
							|  |  |  |             z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] | 
					
						
							|  |  |  |             z = self.wrapped.transformer.text_model.final_layer_norm(z) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             z = outputs.last_hidden_state | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return z | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def encode_embedding_init_text(self, init_text, nvpt): | 
					
						
							|  |  |  |         embedding_layer = self.wrapped.transformer.text_model.embeddings | 
					
						
							|  |  |  |         ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] | 
					
						
							| 
									
										
										
										
											2023-01-01 02:41:15 +03:00
										 |  |  |         embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0) | 
					
						
							| 
									
										
										
										
											2022-11-26 16:10:46 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |         return embedded |