2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from collections import namedtuple
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								import numpy as np
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import torch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import tqdm
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from PIL import Image
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 10:49:07 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								import inspect
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import k_diffusion.sampling
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								import ldm.models.diffusion.ddim
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import ldm.models.diffusion.plms
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-10 16:11:14 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from modules import prompt_parser, devices, processing
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from modules.shared import opts, cmd_opts, state
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import modules.shared as shared
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								samplers_k_diffusion = [
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('Euler', 'sample_euler', ['k_euler'], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('LMS', 'sample_lms', ['k_lms'], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('Heun', 'sample_heun', ['k_heun'], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								samplers_data_k_diffusion = [
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for label, funcname, aliases, options in samplers_k_diffusion
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if hasattr(k_diffusion.sampling, funcname)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 12:08:48 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								all_samplers = [
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 17:21:15 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    *samplers_data_k_diffusion,
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								]
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 12:08:48 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								samplers = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								samplers_for_img2img = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def create_sampler_with_index(list_of_configs, index, model):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    config = list_of_configs[index]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sampler = config.constructor(model)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sampler.config = config
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return sampler
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 12:08:48 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def set_samplers():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    global samplers, samplers_for_img2img
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    hidden = set(opts.hide_samplers)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive'])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    samplers = [x for x in all_samplers if x.name not in hidden]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								set_samplers()
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								sampler_extra_params = {
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 10:49:07 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def setup_img2img_steps(p, steps=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if opts.img2img_fix_steps or steps is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-16 13:38:02 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        t_enc = p.steps - 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        steps = p.steps
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        t_enc = int(min(p.denoising_strength, 0.999) * steps)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return steps, t_enc
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def sample_to_image(samples):
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-10 16:11:14 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0]
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    x_sample = x_sample.astype(np.uint8)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return Image.fromarray(x_sample)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def store_latent(decoded):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state.current_latent = decoded
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not shared.parallel_processing_allowed:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            shared.state.current_image = sample_to_image(decoded)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def extended_tdqm(sequence, *args, desc=None, **kwargs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state.sampling_steps = len(sequence)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state.sampling_step = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-02 20:23:40 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    seq = sequence if cmd_opts.disable_console_progressbars else tqdm.tqdm(sequence, *args, desc=state.job, file=shared.progress_print_out, **kwargs)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for x in seq:
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 05:33:21 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if state.interrupted or state.skipped:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        yield x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        state.sampling_step += 1
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-08 15:37:13 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        shared.total_tqdm.update()
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								ldm.models.diffusion.ddim.tqdm = lambda *args, desc=None, **kwargs: extended_tdqm(*args, desc=desc, **kwargs)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								ldm.models.diffusion.plms.tqdm = lambda *args, desc=None, **kwargs: extended_tdqm(*args, desc=desc, **kwargs)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class VanillaStableDiffusionSampler:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, constructor, sd_model):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.sampler = constructor(sd_model)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-08 19:34:20 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.orig_p_sample_ddim = self.sampler.p_sample_ddim if hasattr(self.sampler, 'p_sample_ddim') else self.sampler.p_sample_plms
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.mask = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.nmask = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.init_latent = None
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.sampler_noises = None
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.step = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.eta = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.default_eta = 0.0
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.config = None
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def number_of_needed_noises(self, p):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        cond = tensor
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 15:25:59 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # for DDIM, shapes must match, we can't just process cond and uncond independently;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # filling unconditional_conditioning with repeats of the last vector to match length is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # not 100% correct but should work well enough
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if unconditional_conditioning.shape[1] < cond.shape[1]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            last_vector = unconditional_conditioning[:, -1:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif unconditional_conditioning.shape[1] > cond.shape[1]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if self.mask is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            img_orig = self.sampler.model.q_sample(self.init_latent, ts)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            x_dec = img_orig * self.mask + self.nmask * x_dec
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if self.mask is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            store_latent(self.init_latent * self.mask + self.nmask * res[1])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            store_latent(res[1])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.step += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return res
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def initialize(self, p):
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-30 22:38:14 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.eta = p.eta if p.eta is not None else opts.eta_ddim
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for fieldname in ['p_sample_ddim', 'p_sample_plms']:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if hasattr(self.sampler, fieldname):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.mask = p.mask if hasattr(p, 'mask') else None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.nmask = p.nmask if hasattr(p, 'nmask') else None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        steps, t_enc = setup_img2img_steps(p, steps)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 22:30:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.initialize(p)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 15:12:24 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # existing code fails with certain step counts, like 9
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        try:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            self.sampler.make_schedule(ddim_num_steps=steps,  ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        except Exception:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            self.sampler.make_schedule(ddim_num_steps=steps+1, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.init_latent = x
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-16 08:51:21 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.step = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        samples = self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return samples
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.initialize(p)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-08 19:20:41 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.init_latent = None
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-16 08:51:21 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.step = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-08 19:20:41 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        steps = steps or p.steps
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 15:12:24 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # existing code fails with certain step counts, like 9
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 20:12:24 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        try:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 20:12:24 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        except Exception:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            samples_ddim, _ = self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 20:12:24 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return samples_ddim
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class CFGDenoiser(torch.nn.Module):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, model):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        super().__init__()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.inner_model = model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.mask = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.nmask = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.init_latent = None
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.step = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def forward(self, x, sigma, uncond, cond, cond_scale):
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        batch_size = len(conds_list)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        repeats = [len(conds_list[i]) for i in range(batch_size)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 15:25:59 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if tensor.shape[1] == uncond.shape[1]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            cond_in = torch.cat([tensor, uncond])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if shared.batch_cond_uncond:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                x_out = self.inner_model(x_in, sigma_in, cond=cond_in)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                x_out = torch.zeros_like(x_in)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                for batch_offset in range(0, x_out.shape[0], batch_size):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    a = batch_offset
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    b = a + batch_size
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b])
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            x_out = torch.zeros_like(x_in)
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 15:25:59 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for batch_offset in range(0, tensor.shape[0], batch_size):
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                a = batch_offset
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 15:25:59 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                b = min(a + batch_size, tensor.shape[0])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=tensor[a:b])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=uncond)
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 15:25:59 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        denoised_uncond = x_out[-uncond.shape[0]:]
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-05 23:16:27 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        denoised = torch.clone(denoised_uncond)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for i, conds in enumerate(conds_list):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for cond_index, weight in conds:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if self.mask is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            denoised = self.init_latent * self.mask + self.nmask * denoised
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 13:10:16 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.step += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return denoised
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def extended_trange(sampler, count, *args, **kwargs):
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    state.sampling_steps = count
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    state.sampling_step = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-02 20:23:40 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    seq = range(count) if cmd_opts.disable_console_progressbars else tqdm.trange(count, *args, desc=state.job, file=shared.progress_print_out, **kwargs)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for x in seq:
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-08 05:33:21 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if state.interrupted or state.skipped:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if sampler.stop_at is not None and x > sampler.stop_at:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        yield x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        state.sampling_step += 1
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-08 15:37:13 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        shared.total_tqdm.update()
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 02:09:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-16 09:47:03 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								class TorchHijack:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, kdiff_sampler):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.kdiff_sampler = kdiff_sampler
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __getattr__(self, item):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if item == 'randn_like':
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return self.kdiff_sampler.randn_like
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if hasattr(torch, item):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return getattr(torch, item)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class KDiffusionSampler:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, funcname, sd_model):
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-15 14:55:38 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.funcname = funcname
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.func = getattr(k_diffusion.sampling, self.funcname)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 10:49:07 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.extra_params = sampler_extra_params.get(funcname, [])
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.sampler_noises = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.sampler_noise_index = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.stop_at = None
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.eta = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.default_eta = 1.0
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.config = None
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 19:33:51 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def callback_state(self, d):
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 23:10:12 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        store_latent(d["denoised"])
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-06 19:33:51 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def number_of_needed_noises(self, p):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return p.steps
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def randn_like(self, x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if noise is not None and x.shape == noise.shape:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            res = noise
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-16 09:47:03 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            res = torch.randn_like(x)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-13 21:49:58 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.sampler_noise_index += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return res
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def initialize(self, p):
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-16 08:51:21 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.model_wrap.step = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-18 23:43:37 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.sampler_noise_index = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.eta = p.eta or opts.eta_ancestral
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if hasattr(k_diffusion.sampling, 'trange'):
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-16 09:47:03 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if self.sampler_noises is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            k_diffusion.sampling.torch = TorchHijack(self)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        extra_params_kwargs = {}
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 10:49:07 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        for param_name in self.extra_params:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                extra_params_kwargs[param_name] = getattr(p, param_name)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if 'eta' in inspect.signature(self.func).parameters:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            extra_params_kwargs['eta'] = self.eta
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return extra_params_kwargs
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        steps, t_enc = setup_img2img_steps(p, steps)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-30 01:46:06 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if p.sampler_noise_scheduler_override:
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 23:27:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            sigmas = p.sampler_noise_scheduler_override(steps)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-30 01:46:06 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 23:27:01 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            sigmas = self.model_wrap.get_sigmas(steps)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        noise = noise * sigmas[steps - t_enc - 1]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        xi = x + noise
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        extra_params_kwargs = self.initialize(p)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        sigma_sched = sigmas[steps - t_enc - 1:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.model_wrap_cfg.init_latent = x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-26 09:56:47 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        steps = steps or p.steps
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-30 01:46:06 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if p.sampler_noise_scheduler_override:
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            sigmas = p.sampler_noise_scheduler_override(steps)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-30 01:46:06 +01:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							
								
									
										
										
										
											2022-10-06 14:12:52 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            sigmas = self.model_wrap.get_sigmas(steps)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = x * sigmas[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-28 18:09:06 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        extra_params_kwargs = self.initialize(p)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-29 10:15:38 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if 'sigma_min' in inspect.signature(self.func).parameters:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-29 13:30:33 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-29 10:15:38 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            if 'n' in inspect.signature(self.func).parameters:
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-29 13:30:33 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                extra_params_kwargs['n'] = steps
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            extra_params_kwargs['sigmas'] = sigmas
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        samples = self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-19 16:42:56 +03:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return samples
							 | 
						
					
						
							
								
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 |