| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  | """SAMPLING ONLY.""" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC | 
					
						
							| 
									
										
										
										
											2023-03-11 11:56:05 +03:00
										 |  |  | from modules import shared, devices | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  | class UniPCSampler(object): | 
					
						
							|  |  |  |     def __init__(self, model, **kwargs): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.model = model | 
					
						
							|  |  |  |         to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device) | 
					
						
							|  |  |  |         self.before_sample = None | 
					
						
							|  |  |  |         self.after_sample = None | 
					
						
							|  |  |  |         self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def register_buffer(self, name, attr): | 
					
						
							|  |  |  |         if type(attr) == torch.Tensor: | 
					
						
							| 
									
										
										
										
											2023-03-11 11:56:05 +03:00
										 |  |  |             if attr.device != devices.device: | 
					
						
							|  |  |  |                 attr = attr.to(devices.device) | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  |         setattr(self, name, attr) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-10 04:47:08 -08:00
										 |  |  |     def set_hooks(self, before_sample, after_sample, after_update): | 
					
						
							|  |  |  |         self.before_sample = before_sample | 
					
						
							|  |  |  |         self.after_sample = after_sample | 
					
						
							|  |  |  |         self.after_update = after_update | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     @torch.no_grad() | 
					
						
							|  |  |  |     def sample(self, | 
					
						
							|  |  |  |                S, | 
					
						
							|  |  |  |                batch_size, | 
					
						
							|  |  |  |                shape, | 
					
						
							|  |  |  |                conditioning=None, | 
					
						
							|  |  |  |                callback=None, | 
					
						
							|  |  |  |                normals_sequence=None, | 
					
						
							|  |  |  |                img_callback=None, | 
					
						
							|  |  |  |                quantize_x0=False, | 
					
						
							|  |  |  |                eta=0., | 
					
						
							|  |  |  |                mask=None, | 
					
						
							|  |  |  |                x0=None, | 
					
						
							|  |  |  |                temperature=1., | 
					
						
							|  |  |  |                noise_dropout=0., | 
					
						
							|  |  |  |                score_corrector=None, | 
					
						
							|  |  |  |                corrector_kwargs=None, | 
					
						
							|  |  |  |                verbose=True, | 
					
						
							|  |  |  |                x_T=None, | 
					
						
							|  |  |  |                log_every_t=100, | 
					
						
							|  |  |  |                unconditional_guidance_scale=1., | 
					
						
							|  |  |  |                unconditional_conditioning=None, | 
					
						
							|  |  |  |                # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... | 
					
						
							|  |  |  |                **kwargs | 
					
						
							|  |  |  |                ): | 
					
						
							|  |  |  |         if conditioning is not None: | 
					
						
							|  |  |  |             if isinstance(conditioning, dict): | 
					
						
							| 
									
										
										
										
											2023-02-10 04:47:08 -08:00
										 |  |  |                 ctmp = conditioning[list(conditioning.keys())[0]] | 
					
						
							|  |  |  |                 while isinstance(ctmp, list): ctmp = ctmp[0] | 
					
						
							|  |  |  |                 cbs = ctmp.shape[0] | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  |                 if cbs != batch_size: | 
					
						
							|  |  |  |                     print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | 
					
						
							| 
									
										
										
										
											2023-02-10 04:47:08 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |             elif isinstance(conditioning, list): | 
					
						
							|  |  |  |                 for ctmp in conditioning: | 
					
						
							|  |  |  |                     if ctmp.shape[0] != batch_size: | 
					
						
							|  |  |  |                         print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  |             else: | 
					
						
							|  |  |  |                 if conditioning.shape[0] != batch_size: | 
					
						
							|  |  |  |                     print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # sampling | 
					
						
							|  |  |  |         C, H, W = shape | 
					
						
							|  |  |  |         size = (batch_size, C, H, W) | 
					
						
							| 
									
										
										
										
											2023-02-10 14:30:35 -08:00
										 |  |  |         print(f'Data shape for UniPC sampling is {size}') | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         device = self.model.betas.device | 
					
						
							|  |  |  |         if x_T is None: | 
					
						
							|  |  |  |             img = torch.randn(size, device=device) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             img = x_T | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-11 06:18:34 -08:00
										 |  |  |         # SD 1.X is "noise", SD 2.X is "v" | 
					
						
							|  |  |  |         model_type = "v" if self.model.parameterization == "v" else "noise" | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  |         model_fn = model_wrapper( | 
					
						
							|  |  |  |             lambda x, t, c: self.model.apply_model(x, t, c), | 
					
						
							|  |  |  |             ns, | 
					
						
							| 
									
										
										
										
											2023-02-11 06:18:34 -08:00
										 |  |  |             model_type=model_type, | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  |             guidance_type="classifier-free", | 
					
						
							|  |  |  |             #condition=conditioning, | 
					
						
							|  |  |  |             #unconditional_condition=unconditional_conditioning, | 
					
						
							|  |  |  |             guidance_scale=unconditional_guidance_scale, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-10 19:56:14 -05:00
										 |  |  |         uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update) | 
					
						
							| 
									
										
										
										
											2023-02-10 05:27:05 -08:00
										 |  |  |         x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final) | 
					
						
							| 
									
										
										
										
											2023-02-10 03:30:20 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         return x.to(device), None |