| 
									
										
										
										
											2022-09-14 14:47:54 +03:00
										 |  |  | import numpy as np | 
					
						
							|  |  |  | from tqdm import trange | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import modules.scripts as scripts | 
					
						
							|  |  |  | import gradio as gr | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from modules import processing, shared, sd_samplers, images | 
					
						
							|  |  |  | from modules.processing import Processed | 
					
						
							|  |  |  | from modules.sd_samplers import samplers | 
					
						
							|  |  |  | from modules.shared import opts, cmd_opts, state | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Script(scripts.Script): | 
					
						
							|  |  |  |     def title(self): | 
					
						
							|  |  |  |         return "Loopback" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def show(self, is_img2img): | 
					
						
							|  |  |  |         return is_img2img | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def ui(self, is_img2img): | 
					
						
							|  |  |  |         loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4) | 
					
						
							|  |  |  |         denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return [loops, denoising_strength_change_factor] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def run(self, p, loops, denoising_strength_change_factor): | 
					
						
							|  |  |  |         processing.fix_seed(p) | 
					
						
							|  |  |  |         batch_count = p.n_iter | 
					
						
							|  |  |  |         p.extra_generation_params = { | 
					
						
							|  |  |  |             "Denoising strength change factor": denoising_strength_change_factor, | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         p.batch_size = 1 | 
					
						
							|  |  |  |         p.n_iter = 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         output_images, info = None, None | 
					
						
							|  |  |  |         initial_seed = None | 
					
						
							|  |  |  |         initial_info = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         grids = [] | 
					
						
							|  |  |  |         all_images = [] | 
					
						
							|  |  |  |         state.job_count = loops * batch_count | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-17 18:18:30 -04:00
										 |  |  |         initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] | 
					
						
							| 
									
										
										
										
											2022-09-16 08:33:47 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-09-14 14:47:54 +03:00
										 |  |  |         for n in range(batch_count): | 
					
						
							|  |  |  |             history = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             for i in range(loops): | 
					
						
							|  |  |  |                 p.n_iter = 1 | 
					
						
							|  |  |  |                 p.batch_size = 1 | 
					
						
							|  |  |  |                 p.do_not_save_grid = True | 
					
						
							| 
									
										
										
										
											2022-09-17 18:20:43 -04:00
										 |  |  | 
 | 
					
						
							|  |  |  |                 if opts.img2img_color_correction: | 
					
						
							|  |  |  |                     p.color_corrections = initial_color_corrections | 
					
						
							| 
									
										
										
										
											2022-09-14 14:47:54 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |                 state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 processed = processing.process_images(p) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 if initial_seed is None: | 
					
						
							|  |  |  |                     initial_seed = processed.seed | 
					
						
							|  |  |  |                     initial_info = processed.info | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 init_img = processed.images[0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 p.init_images = [init_img] | 
					
						
							|  |  |  |                 p.seed = processed.seed + 1 | 
					
						
							|  |  |  |                 p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1) | 
					
						
							|  |  |  |                 history.append(processed.images[0]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             grid = images.image_grid(history, rows=1) | 
					
						
							|  |  |  |             if opts.grid_save: | 
					
						
							|  |  |  |                 images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             grids.append(grid) | 
					
						
							|  |  |  |             all_images += history | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if opts.return_grid: | 
					
						
							|  |  |  |             all_images = grids + all_images | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         processed = Processed(p, all_images, initial_seed, initial_info) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return processed |