mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
	
	
		
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # this file is taken from https://github.com/xinntao/ESRGAN | ||
|  | 
 | ||
|  | import functools | ||
|  | import torch | ||
|  | import torch.nn as nn | ||
|  | import torch.nn.functional as F | ||
|  | 
 | ||
|  | 
 | ||
|  | def make_layer(block, n_layers): | ||
|  |     layers = [] | ||
|  |     for _ in range(n_layers): | ||
|  |         layers.append(block()) | ||
|  |     return nn.Sequential(*layers) | ||
|  | 
 | ||
|  | 
 | ||
|  | class ResidualDenseBlock_5C(nn.Module): | ||
|  |     def __init__(self, nf=64, gc=32, bias=True): | ||
|  |         super(ResidualDenseBlock_5C, self).__init__() | ||
|  |         # gc: growth channel, i.e. intermediate channels | ||
|  |         self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias) | ||
|  |         self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias) | ||
|  |         self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias) | ||
|  |         self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias) | ||
|  |         self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias) | ||
|  |         self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | ||
|  | 
 | ||
|  |         # initialization | ||
|  |         # mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         x1 = self.lrelu(self.conv1(x)) | ||
|  |         x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) | ||
|  |         x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) | ||
|  |         x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) | ||
|  |         x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) | ||
|  |         return x5 * 0.2 + x | ||
|  | 
 | ||
|  | 
 | ||
|  | class RRDB(nn.Module): | ||
|  |     '''Residual in Residual Dense Block''' | ||
|  | 
 | ||
|  |     def __init__(self, nf, gc=32): | ||
|  |         super(RRDB, self).__init__() | ||
|  |         self.RDB1 = ResidualDenseBlock_5C(nf, gc) | ||
|  |         self.RDB2 = ResidualDenseBlock_5C(nf, gc) | ||
|  |         self.RDB3 = ResidualDenseBlock_5C(nf, gc) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         out = self.RDB1(x) | ||
|  |         out = self.RDB2(out) | ||
|  |         out = self.RDB3(out) | ||
|  |         return out * 0.2 + x | ||
|  | 
 | ||
|  | 
 | ||
|  | class RRDBNet(nn.Module): | ||
|  |     def __init__(self, in_nc, out_nc, nf, nb, gc=32): | ||
|  |         super(RRDBNet, self).__init__() | ||
|  |         RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc) | ||
|  | 
 | ||
|  |         self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) | ||
|  |         self.RRDB_trunk = make_layer(RRDB_block_f, nb) | ||
|  |         self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) | ||
|  |         #### upsampling | ||
|  |         self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) | ||
|  |         self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) | ||
|  |         self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) | ||
|  |         self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) | ||
|  | 
 | ||
|  |         self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         fea = self.conv_first(x) | ||
|  |         trunk = self.trunk_conv(self.RRDB_trunk(fea)) | ||
|  |         fea = fea + trunk | ||
|  | 
 | ||
|  |         fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest'))) | ||
|  |         fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))) | ||
|  |         out = self.conv_last(self.lrelu(self.HRconv(fea))) | ||
|  | 
 | ||
|  |         return out |