| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | import torch | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  | import tqdm | 
					
						
							| 
									
										
										
										
											2022-09-03 12:08:45 +03:00
										 |  |  | import k_diffusion.sampling | 
					
						
							| 
									
										
										
										
											2023-07-18 00:32:01 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-07-18 00:32:01 -04:00
										 |  |  | @torch.no_grad() | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  | def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None): | 
					
						
							|  |  |  |     """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
 | 
					
						
							|  |  |  |     Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]} | 
					
						
							|  |  |  |     If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list | 
					
						
							|  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2023-07-18 00:32:01 -04:00
										 |  |  |     extra_args = {} if extra_args is None else extra_args | 
					
						
							|  |  |  |     s_in = x.new_ones([x.shape[0]]) | 
					
						
							|  |  |  |     step_id = 0 | 
					
						
							| 
									
										
										
										
											2023-07-20 20:36:40 -04:00
										 |  |  |     from k_diffusion.sampling import to_d, get_sigmas_karras | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def heun_step(x, old_sigma, new_sigma, second_order=True): | 
					
						
							| 
									
										
										
										
											2023-07-18 00:32:01 -04:00
										 |  |  |         nonlocal step_id | 
					
						
							|  |  |  |         denoised = model(x, old_sigma * s_in, **extra_args) | 
					
						
							|  |  |  |         d = to_d(x, old_sigma, denoised) | 
					
						
							|  |  |  |         if callback is not None: | 
					
						
							|  |  |  |             callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised}) | 
					
						
							|  |  |  |         dt = new_sigma - old_sigma | 
					
						
							| 
									
										
										
										
											2023-07-20 02:24:18 -04:00
										 |  |  |         if new_sigma == 0 or not second_order: | 
					
						
							| 
									
										
										
										
											2023-07-18 00:32:01 -04:00
										 |  |  |             # Euler method | 
					
						
							|  |  |  |             x = x + d * dt | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             # Heun's method | 
					
						
							|  |  |  |             x_2 = x + d * dt | 
					
						
							|  |  |  |             denoised_2 = model(x_2, new_sigma * s_in, **extra_args) | 
					
						
							|  |  |  |             d_2 = to_d(x_2, new_sigma, denoised_2) | 
					
						
							|  |  |  |             d_prime = (d + d_2) / 2 | 
					
						
							|  |  |  |             x = x + d_prime * dt | 
					
						
							|  |  |  |         step_id += 1 | 
					
						
							|  |  |  |         return x | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-07-20 02:24:18 -04:00
										 |  |  |     steps = sigmas.shape[0] - 1 | 
					
						
							| 
									
										
										
										
											2023-07-20 20:34:41 -04:00
										 |  |  |     if restart_list is None: | 
					
						
							|  |  |  |         if steps >= 20: | 
					
						
							|  |  |  |             restart_steps = 9 | 
					
						
							| 
									
										
										
										
											2023-07-20 21:27:43 -04:00
										 |  |  |             restart_times = 1 | 
					
						
							|  |  |  |             if steps >= 36: | 
					
						
							|  |  |  |                 restart_steps = steps // 4 | 
					
						
							|  |  |  |                 restart_times = 2 | 
					
						
							| 
									
										
										
										
											2023-07-20 20:34:41 -04:00
										 |  |  |             sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device) | 
					
						
							|  |  |  |             restart_list = {0.1: [restart_steps + 1, restart_times, 2]} | 
					
						
							|  |  |  |         else: | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  |             restart_list = {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-07-25 22:35:43 -04:00
										 |  |  |     step_list = [] | 
					
						
							|  |  |  |     for i in range(len(sigmas) - 1): | 
					
						
							|  |  |  |         step_list.append((sigmas[i], sigmas[i + 1])) | 
					
						
							| 
									
										
										
										
											2023-07-18 00:32:01 -04:00
										 |  |  |         if i + 1 in restart_list: | 
					
						
							|  |  |  |             restart_steps, restart_times, restart_max = restart_list[i + 1] | 
					
						
							|  |  |  |             min_idx = i + 1 | 
					
						
							|  |  |  |             max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0)) | 
					
						
							| 
									
										
										
										
											2023-07-18 00:55:02 -04:00
										 |  |  |             if max_idx < min_idx: | 
					
						
							| 
									
										
										
										
											2023-07-25 22:35:43 -04:00
										 |  |  |                 sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1] | 
					
						
							| 
									
										
										
										
											2023-07-18 01:02:04 -04:00
										 |  |  |                 while restart_times > 0: | 
					
						
							|  |  |  |                     restart_times -= 1 | 
					
						
							| 
									
										
										
										
											2023-07-25 22:35:43 -04:00
										 |  |  |                     step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])]) | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-07-25 22:35:43 -04:00
										 |  |  |     last_sigma = None | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  |     for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable): | 
					
						
							| 
									
										
										
										
											2023-07-25 22:35:43 -04:00
										 |  |  |         if last_sigma is None: | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  |             last_sigma = old_sigma | 
					
						
							|  |  |  |         elif last_sigma < old_sigma: | 
					
						
							|  |  |  |             x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5 | 
					
						
							|  |  |  |         x = heun_step(x, old_sigma, new_sigma) | 
					
						
							|  |  |  |         last_sigma = new_sigma | 
					
						
							| 
									
										
										
										
											2023-07-18 00:32:01 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-07-29 08:38:00 +03:00
										 |  |  |     return x |