mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	Use type to determine if it is enable
This commit is contained in:
		
							parent
							
								
									78aed1fa4a
								
							
						
					
					
						commit
						72377b0251
					
				@ -318,7 +318,6 @@ infotext_to_setting_name_mapping = [
 | 
			
		||||
    ('Conditional mask weight', 'inpainting_mask_weight'),
 | 
			
		||||
    ('Model hash', 'sd_model_checkpoint'),
 | 
			
		||||
    ('ENSD', 'eta_noise_seed_delta'),
 | 
			
		||||
    ('Enable Custom KDiffusion Schedule', 'custom_k_sched'),
 | 
			
		||||
    ('KDiffusion Scheduler Type', 'k_sched_type'),
 | 
			
		||||
    ('KDiffusion Scheduler sigma_max', 'sigma_max'),
 | 
			
		||||
    ('KDiffusion Scheduler sigma_min', 'sigma_min'),
 | 
			
		||||
 | 
			
		||||
@ -46,6 +46,7 @@ sampler_extra_params = {
 | 
			
		||||
 | 
			
		||||
k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
 | 
			
		||||
k_diffusion_scheduler = {
 | 
			
		||||
    'None': None,
 | 
			
		||||
    'karras': k_diffusion.sampling.get_sigmas_karras,
 | 
			
		||||
    'exponential': k_diffusion.sampling.get_sigmas_exponential,
 | 
			
		||||
    'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
 | 
			
		||||
@ -295,8 +296,7 @@ class KDiffusionSampler:
 | 
			
		||||
 | 
			
		||||
        k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
 | 
			
		||||
 | 
			
		||||
        if opts.custom_k_sched:
 | 
			
		||||
            p.extra_generation_params["Enable Custom KDiffusion Schedule"] = True
 | 
			
		||||
        if opts.k_sched_type != "None":
 | 
			
		||||
            p.extra_generation_params["KDiffusion Scheduler Type"] = opts.k_sched_type
 | 
			
		||||
            p.extra_generation_params["KDiffusion Scheduler sigma_max"] = opts.sigma_max
 | 
			
		||||
            p.extra_generation_params["KDiffusion Scheduler sigma_min"] = opts.sigma_min
 | 
			
		||||
@ -325,7 +325,7 @@ class KDiffusionSampler:
 | 
			
		||||
 | 
			
		||||
        if p.sampler_noise_scheduler_override:
 | 
			
		||||
            sigmas = p.sampler_noise_scheduler_override(steps)
 | 
			
		||||
        elif opts.custom_k_sched:
 | 
			
		||||
        elif opts.k_sched_type != "None":
 | 
			
		||||
            sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
 | 
			
		||||
            sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
 | 
			
		||||
            sigmas_kwargs = {
 | 
			
		||||
 | 
			
		||||
@ -517,8 +517,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
 | 
			
		||||
    's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
 | 
			
		||||
    's_tmin':  OptionInfo(0.0, "sigma tmin",  gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
 | 
			
		||||
    's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
 | 
			
		||||
    'custom_k_sched': OptionInfo(False, "Enable Custom KDiffusion Scheduler"),
 | 
			
		||||
    'k_sched_type':  OptionInfo("karras", "scheduler type", gr.Dropdown, {"choices": ["karras", "exponential", "polyexponential"]}),
 | 
			
		||||
    'k_sched_type':  OptionInfo("default", "scheduler type", gr.Dropdown, {"choices": ["None", "karras", "exponential", "polyexponential"]}),
 | 
			
		||||
    'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("the maximum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use."),
 | 
			
		||||
    'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("the minimum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use."),
 | 
			
		||||
    'rho':  OptionInfo(7.0, "rho", gr.Number).info("higher will make a more steep noise scheduler (decrease faster). default for karras is 7.0, for polyexponential is 1.0"),
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user