mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	extremely basic and incomplete swinir implementation
This commit is contained in:
		
							parent
							
								
									9035afbab5
								
							
						
					
					
						commit
						7267b7d2d9
					
				
							
								
								
									
										74
									
								
								swinir.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								swinir.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,74 @@ | ||||
| import sys | ||||
| import traceback | ||||
| import cv2 | ||||
| from collections import OrderedDict | ||||
| import os | ||||
| import requests | ||||
| from collections import namedtuple | ||||
| import numpy as np | ||||
| from PIL import Image | ||||
| import torch | ||||
| import modules.images | ||||
| from modules.shared import cmd_opts, opts, device | ||||
| from modules.swinir_arch import SwinIR as net | ||||
| precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext | ||||
| def load_model(task = "realsr", large_model = True, model_path=next(os.listdir(cmd_opts.esrgan_models_path))): | ||||
|     if not large_model: | ||||
|     # use 'nearest+conv' to avoid block artifacts | ||||
|         model = net(upscale=scale, in_chans=3, img_size=64, window_size=8, | ||||
|                     img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], | ||||
|                     mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv') | ||||
|     else: | ||||
|         # larger model size; use '3conv' to save parameters and memory; use ema for GAN training | ||||
|         model = net(upscale=scale, in_chans=3, img_size=64, window_size=8, | ||||
|                     img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, | ||||
|                     num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], | ||||
|                     mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv') | ||||
|      | ||||
|     pretrained_model = torch.load(model_path) | ||||
|     model.load_state_dict(pretrained_model, strict=True) | ||||
| 
 | ||||
|     return model.half().to(device) | ||||
|      | ||||
| def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, window_size = 8, scale = 4): | ||||
|     img = cv2.imread(img, cv2.IMREAD_COLOR).astype(np.float16) / 255. | ||||
|     model = load_model() | ||||
|     with torch.no_grad(), precision_scope("cuda"): | ||||
|         _, _, h_old, w_old = img.size() | ||||
|         h_pad = (h_old // window_size + 1) * window_size - h_old | ||||
|         w_pad = (w_old // window_size + 1) * window_size - w_old | ||||
|         img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, :h_old + h_pad, :] | ||||
|         img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, :w_old + w_pad] | ||||
|         output = inference(img, model, tile, tile_overlap, window_size, scale) | ||||
|         output = output[..., :h_old * scale, :w_old * scale] | ||||
|         output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | ||||
|         if output.ndim == 3: | ||||
|             output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))  # CHW-RGB to HCW-BGR | ||||
|         output = (output * 255.0).round().astype(np.uint8)  # float32 to uint8 | ||||
|         return output | ||||
|      | ||||
|      | ||||
| def inference(img, model, tile, tile_overlap, window_size, scale): | ||||
|     # test the image tile by tile | ||||
|     b, c, h, w = img.size() | ||||
|     tile = min(tile, h, w) | ||||
|     assert tile % window_size == 0, "tile size should be a multiple of window_size" | ||||
|     sf = scale | ||||
| 
 | ||||
|     stride = tile - tile_overlap | ||||
|     h_idx_list = list(range(0, h-tile, stride)) + [h-tile] | ||||
|     w_idx_list = list(range(0, w-tile, stride)) + [w-tile] | ||||
|     E = torch.zeros(b, c, h*sf, w*sf, dtype=torch.half, device=device).type_as(img) | ||||
|     W = torch.zeros_like(E, dtype=torch.half, device=device) | ||||
| 
 | ||||
|     for h_idx in h_idx_list: | ||||
|         for w_idx in w_idx_list: | ||||
|             in_patch = img[..., h_idx:h_idx+tile, w_idx:w_idx+tile] | ||||
|             out_patch = model(in_patch) | ||||
|             out_patch_mask = torch.ones_like(out_patch) | ||||
| 
 | ||||
|             E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch) | ||||
|             W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask) | ||||
|     output = E.div_(W) | ||||
| 
 | ||||
|     return output | ||||
							
								
								
									
										867
									
								
								swinir_arch.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										867
									
								
								swinir_arch.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,867 @@ | ||||
| # ----------------------------------------------------------------------------------- | ||||
| # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257 | ||||
| # Originally Written by Ze Liu, Modified by Jingyun Liang. | ||||
| # ----------------------------------------------------------------------------------- | ||||
| 
 | ||||
| import math | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| import torch.utils.checkpoint as checkpoint | ||||
| from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | ||||
| 
 | ||||
| 
 | ||||
| class Mlp(nn.Module): | ||||
|     def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | ||||
|         super().__init__() | ||||
|         out_features = out_features or in_features | ||||
|         hidden_features = hidden_features or in_features | ||||
|         self.fc1 = nn.Linear(in_features, hidden_features) | ||||
|         self.act = act_layer() | ||||
|         self.fc2 = nn.Linear(hidden_features, out_features) | ||||
|         self.drop = nn.Dropout(drop) | ||||
| 
 | ||||
|     def forward(self, x): | ||||
|         x = self.fc1(x) | ||||
|         x = self.act(x) | ||||
|         x = self.drop(x) | ||||
|         x = self.fc2(x) | ||||
|         x = self.drop(x) | ||||
|         return x | ||||
| 
 | ||||
| 
 | ||||
| def window_partition(x, window_size): | ||||
|     """ | ||||
|     Args: | ||||
|         x: (B, H, W, C) | ||||
|         window_size (int): window size | ||||
| 
 | ||||
|     Returns: | ||||
|         windows: (num_windows*B, window_size, window_size, C) | ||||
|     """ | ||||
|     B, H, W, C = x.shape | ||||
|     x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | ||||
|     windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | ||||
|     return windows | ||||
| 
 | ||||
| 
 | ||||
| def window_reverse(windows, window_size, H, W): | ||||
|     """ | ||||
|     Args: | ||||
|         windows: (num_windows*B, window_size, window_size, C) | ||||
|         window_size (int): Window size | ||||
|         H (int): Height of image | ||||
|         W (int): Width of image | ||||
| 
 | ||||
|     Returns: | ||||
|         x: (B, H, W, C) | ||||
|     """ | ||||
|     B = int(windows.shape[0] / (H * W / window_size / window_size)) | ||||
|     x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | ||||
|     x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | ||||
|     return x | ||||
| 
 | ||||
| 
 | ||||
| class WindowAttention(nn.Module): | ||||
|     r""" Window based multi-head self attention (W-MSA) module with relative position bias. | ||||
|     It supports both of shifted and non-shifted window. | ||||
| 
 | ||||
|     Args: | ||||
|         dim (int): Number of input channels. | ||||
|         window_size (tuple[int]): The height and width of the window. | ||||
|         num_heads (int): Number of attention heads. | ||||
|         qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True | ||||
|         qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | ||||
|         attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | ||||
|         proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): | ||||
| 
 | ||||
|         super().__init__() | ||||
|         self.dim = dim | ||||
|         self.window_size = window_size  # Wh, Ww | ||||
|         self.num_heads = num_heads | ||||
|         head_dim = dim // num_heads | ||||
|         self.scale = qk_scale or head_dim ** -0.5 | ||||
| 
 | ||||
|         # define a parameter table of relative position bias | ||||
|         self.relative_position_bias_table = nn.Parameter( | ||||
|             torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH | ||||
| 
 | ||||
|         # get pair-wise relative position index for each token inside the window | ||||
|         coords_h = torch.arange(self.window_size[0]) | ||||
|         coords_w = torch.arange(self.window_size[1]) | ||||
|         coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww | ||||
|         coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww | ||||
|         relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww | ||||
|         relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2 | ||||
|         relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0 | ||||
|         relative_coords[:, :, 1] += self.window_size[1] - 1 | ||||
|         relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | ||||
|         relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww | ||||
|         self.register_buffer("relative_position_index", relative_position_index) | ||||
| 
 | ||||
|         self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | ||||
|         self.attn_drop = nn.Dropout(attn_drop) | ||||
|         self.proj = nn.Linear(dim, dim) | ||||
| 
 | ||||
|         self.proj_drop = nn.Dropout(proj_drop) | ||||
| 
 | ||||
|         trunc_normal_(self.relative_position_bias_table, std=.02) | ||||
|         self.softmax = nn.Softmax(dim=-1) | ||||
| 
 | ||||
|     def forward(self, x, mask=None): | ||||
|         """ | ||||
|         Args: | ||||
|             x: input features with shape of (num_windows*B, N, C) | ||||
|             mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | ||||
|         """ | ||||
|         B_, N, C = x.shape | ||||
|         qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | ||||
|         q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple) | ||||
| 
 | ||||
|         q = q * self.scale | ||||
|         attn = (q @ k.transpose(-2, -1)) | ||||
| 
 | ||||
|         relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | ||||
|             self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH | ||||
|         relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww | ||||
|         attn = attn + relative_position_bias.unsqueeze(0) | ||||
| 
 | ||||
|         if mask is not None: | ||||
|             nW = mask.shape[0] | ||||
|             attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | ||||
|             attn = attn.view(-1, self.num_heads, N, N) | ||||
|             attn = self.softmax(attn) | ||||
|         else: | ||||
|             attn = self.softmax(attn) | ||||
| 
 | ||||
|         attn = self.attn_drop(attn) | ||||
| 
 | ||||
|         x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | ||||
|         x = self.proj(x) | ||||
|         x = self.proj_drop(x) | ||||
|         return x | ||||
| 
 | ||||
|     def extra_repr(self) -> str: | ||||
|         return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' | ||||
| 
 | ||||
|     def flops(self, N): | ||||
|         # calculate flops for 1 window with token length of N | ||||
|         flops = 0 | ||||
|         # qkv = self.qkv(x) | ||||
|         flops += N * self.dim * 3 * self.dim | ||||
|         # attn = (q @ k.transpose(-2, -1)) | ||||
|         flops += self.num_heads * N * (self.dim // self.num_heads) * N | ||||
|         #  x = (attn @ v) | ||||
|         flops += self.num_heads * N * N * (self.dim // self.num_heads) | ||||
|         # x = self.proj(x) | ||||
|         flops += N * self.dim * self.dim | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| class SwinTransformerBlock(nn.Module): | ||||
|     r""" Swin Transformer Block. | ||||
| 
 | ||||
|     Args: | ||||
|         dim (int): Number of input channels. | ||||
|         input_resolution (tuple[int]): Input resulotion. | ||||
|         num_heads (int): Number of attention heads. | ||||
|         window_size (int): Window size. | ||||
|         shift_size (int): Shift size for SW-MSA. | ||||
|         mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | ||||
|         qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | ||||
|         qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | ||||
|         drop (float, optional): Dropout rate. Default: 0.0 | ||||
|         attn_drop (float, optional): Attention dropout rate. Default: 0.0 | ||||
|         drop_path (float, optional): Stochastic depth rate. Default: 0.0 | ||||
|         act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | ||||
|         norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, | ||||
|                  mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., | ||||
|                  act_layer=nn.GELU, norm_layer=nn.LayerNorm): | ||||
|         super().__init__() | ||||
|         self.dim = dim | ||||
|         self.input_resolution = input_resolution | ||||
|         self.num_heads = num_heads | ||||
|         self.window_size = window_size | ||||
|         self.shift_size = shift_size | ||||
|         self.mlp_ratio = mlp_ratio | ||||
|         if min(self.input_resolution) <= self.window_size: | ||||
|             # if window size is larger than input resolution, we don't partition windows | ||||
|             self.shift_size = 0 | ||||
|             self.window_size = min(self.input_resolution) | ||||
|         assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" | ||||
| 
 | ||||
|         self.norm1 = norm_layer(dim) | ||||
|         self.attn = WindowAttention( | ||||
|             dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, | ||||
|             qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | ||||
| 
 | ||||
|         self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | ||||
|         self.norm2 = norm_layer(dim) | ||||
|         mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|         self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | ||||
| 
 | ||||
|         if self.shift_size > 0: | ||||
|             attn_mask = self.calculate_mask(self.input_resolution) | ||||
|         else: | ||||
|             attn_mask = None | ||||
| 
 | ||||
|         self.register_buffer("attn_mask", attn_mask) | ||||
| 
 | ||||
|     def calculate_mask(self, x_size): | ||||
|         # calculate attention mask for SW-MSA | ||||
|         H, W = x_size | ||||
|         img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1 | ||||
|         h_slices = (slice(0, -self.window_size), | ||||
|                     slice(-self.window_size, -self.shift_size), | ||||
|                     slice(-self.shift_size, None)) | ||||
|         w_slices = (slice(0, -self.window_size), | ||||
|                     slice(-self.window_size, -self.shift_size), | ||||
|                     slice(-self.shift_size, None)) | ||||
|         cnt = 0 | ||||
|         for h in h_slices: | ||||
|             for w in w_slices: | ||||
|                 img_mask[:, h, w, :] = cnt | ||||
|                 cnt += 1 | ||||
| 
 | ||||
|         mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1 | ||||
|         mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | ||||
|         attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | ||||
|         attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | ||||
| 
 | ||||
|         return attn_mask | ||||
| 
 | ||||
|     def forward(self, x, x_size): | ||||
|         H, W = x_size | ||||
|         B, L, C = x.shape | ||||
|         # assert L == H * W, "input feature has wrong size" | ||||
| 
 | ||||
|         shortcut = x | ||||
|         x = self.norm1(x) | ||||
|         x = x.view(B, H, W, C) | ||||
| 
 | ||||
|         # cyclic shift | ||||
|         if self.shift_size > 0: | ||||
|             shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | ||||
|         else: | ||||
|             shifted_x = x | ||||
| 
 | ||||
|         # partition windows | ||||
|         x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C | ||||
|         x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C | ||||
| 
 | ||||
|         # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size | ||||
|         if self.input_resolution == x_size: | ||||
|             attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, C | ||||
|         else: | ||||
|             attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) | ||||
| 
 | ||||
|         # merge windows | ||||
|         attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | ||||
|         shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C | ||||
| 
 | ||||
|         # reverse cyclic shift | ||||
|         if self.shift_size > 0: | ||||
|             x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | ||||
|         else: | ||||
|             x = shifted_x | ||||
|         x = x.view(B, H * W, C) | ||||
| 
 | ||||
|         # FFN | ||||
|         x = shortcut + self.drop_path(x) | ||||
|         x = x + self.drop_path(self.mlp(self.norm2(x))) | ||||
| 
 | ||||
|         return x | ||||
| 
 | ||||
|     def extra_repr(self) -> str: | ||||
|         return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ | ||||
|                f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" | ||||
| 
 | ||||
|     def flops(self): | ||||
|         flops = 0 | ||||
|         H, W = self.input_resolution | ||||
|         # norm1 | ||||
|         flops += self.dim * H * W | ||||
|         # W-MSA/SW-MSA | ||||
|         nW = H * W / self.window_size / self.window_size | ||||
|         flops += nW * self.attn.flops(self.window_size * self.window_size) | ||||
|         # mlp | ||||
|         flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | ||||
|         # norm2 | ||||
|         flops += self.dim * H * W | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| class PatchMerging(nn.Module): | ||||
|     r""" Patch Merging Layer. | ||||
| 
 | ||||
|     Args: | ||||
|         input_resolution (tuple[int]): Resolution of input feature. | ||||
|         dim (int): Number of input channels. | ||||
|         norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): | ||||
|         super().__init__() | ||||
|         self.input_resolution = input_resolution | ||||
|         self.dim = dim | ||||
|         self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | ||||
|         self.norm = norm_layer(4 * dim) | ||||
| 
 | ||||
|     def forward(self, x): | ||||
|         """ | ||||
|         x: B, H*W, C | ||||
|         """ | ||||
|         H, W = self.input_resolution | ||||
|         B, L, C = x.shape | ||||
|         assert L == H * W, "input feature has wrong size" | ||||
|         assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | ||||
| 
 | ||||
|         x = x.view(B, H, W, C) | ||||
| 
 | ||||
|         x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C | ||||
|         x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C | ||||
|         x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C | ||||
|         x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C | ||||
|         x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C | ||||
|         x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C | ||||
| 
 | ||||
|         x = self.norm(x) | ||||
|         x = self.reduction(x) | ||||
| 
 | ||||
|         return x | ||||
| 
 | ||||
|     def extra_repr(self) -> str: | ||||
|         return f"input_resolution={self.input_resolution}, dim={self.dim}" | ||||
| 
 | ||||
|     def flops(self): | ||||
|         H, W = self.input_resolution | ||||
|         flops = H * W * self.dim | ||||
|         flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| class BasicLayer(nn.Module): | ||||
|     """ A basic Swin Transformer layer for one stage. | ||||
| 
 | ||||
|     Args: | ||||
|         dim (int): Number of input channels. | ||||
|         input_resolution (tuple[int]): Input resolution. | ||||
|         depth (int): Number of blocks. | ||||
|         num_heads (int): Number of attention heads. | ||||
|         window_size (int): Local window size. | ||||
|         mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | ||||
|         qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | ||||
|         qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | ||||
|         drop (float, optional): Dropout rate. Default: 0.0 | ||||
|         attn_drop (float, optional): Attention dropout rate. Default: 0.0 | ||||
|         drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | ||||
|         norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | ||||
|         downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | ||||
|         use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, dim, input_resolution, depth, num_heads, window_size, | ||||
|                  mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., | ||||
|                  drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): | ||||
| 
 | ||||
|         super().__init__() | ||||
|         self.dim = dim | ||||
|         self.input_resolution = input_resolution | ||||
|         self.depth = depth | ||||
|         self.use_checkpoint = use_checkpoint | ||||
| 
 | ||||
|         # build blocks | ||||
|         self.blocks = nn.ModuleList([ | ||||
|             SwinTransformerBlock(dim=dim, input_resolution=input_resolution, | ||||
|                                  num_heads=num_heads, window_size=window_size, | ||||
|                                  shift_size=0 if (i % 2 == 0) else window_size // 2, | ||||
|                                  mlp_ratio=mlp_ratio, | ||||
|                                  qkv_bias=qkv_bias, qk_scale=qk_scale, | ||||
|                                  drop=drop, attn_drop=attn_drop, | ||||
|                                  drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | ||||
|                                  norm_layer=norm_layer) | ||||
|             for i in range(depth)]) | ||||
| 
 | ||||
|         # patch merging layer | ||||
|         if downsample is not None: | ||||
|             self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) | ||||
|         else: | ||||
|             self.downsample = None | ||||
| 
 | ||||
|     def forward(self, x, x_size): | ||||
|         for blk in self.blocks: | ||||
|             if self.use_checkpoint: | ||||
|                 x = checkpoint.checkpoint(blk, x, x_size) | ||||
|             else: | ||||
|                 x = blk(x, x_size) | ||||
|         if self.downsample is not None: | ||||
|             x = self.downsample(x) | ||||
|         return x | ||||
| 
 | ||||
|     def extra_repr(self) -> str: | ||||
|         return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | ||||
| 
 | ||||
|     def flops(self): | ||||
|         flops = 0 | ||||
|         for blk in self.blocks: | ||||
|             flops += blk.flops() | ||||
|         if self.downsample is not None: | ||||
|             flops += self.downsample.flops() | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| class RSTB(nn.Module): | ||||
|     """Residual Swin Transformer Block (RSTB). | ||||
| 
 | ||||
|     Args: | ||||
|         dim (int): Number of input channels. | ||||
|         input_resolution (tuple[int]): Input resolution. | ||||
|         depth (int): Number of blocks. | ||||
|         num_heads (int): Number of attention heads. | ||||
|         window_size (int): Local window size. | ||||
|         mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | ||||
|         qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | ||||
|         qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | ||||
|         drop (float, optional): Dropout rate. Default: 0.0 | ||||
|         attn_drop (float, optional): Attention dropout rate. Default: 0.0 | ||||
|         drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | ||||
|         norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | ||||
|         downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | ||||
|         use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | ||||
|         img_size: Input image size. | ||||
|         patch_size: Patch size. | ||||
|         resi_connection: The convolutional block before residual connection. | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, dim, input_resolution, depth, num_heads, window_size, | ||||
|                  mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., | ||||
|                  drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, | ||||
|                  img_size=224, patch_size=4, resi_connection='1conv'): | ||||
|         super(RSTB, self).__init__() | ||||
| 
 | ||||
|         self.dim = dim | ||||
|         self.input_resolution = input_resolution | ||||
| 
 | ||||
|         self.residual_group = BasicLayer(dim=dim, | ||||
|                                          input_resolution=input_resolution, | ||||
|                                          depth=depth, | ||||
|                                          num_heads=num_heads, | ||||
|                                          window_size=window_size, | ||||
|                                          mlp_ratio=mlp_ratio, | ||||
|                                          qkv_bias=qkv_bias, qk_scale=qk_scale, | ||||
|                                          drop=drop, attn_drop=attn_drop, | ||||
|                                          drop_path=drop_path, | ||||
|                                          norm_layer=norm_layer, | ||||
|                                          downsample=downsample, | ||||
|                                          use_checkpoint=use_checkpoint) | ||||
| 
 | ||||
|         if resi_connection == '1conv': | ||||
|             self.conv = nn.Conv2d(dim, dim, 3, 1, 1) | ||||
|         elif resi_connection == '3conv': | ||||
|             # to save parameters and memory | ||||
|             self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), | ||||
|                                       nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), | ||||
|                                       nn.LeakyReLU(negative_slope=0.2, inplace=True), | ||||
|                                       nn.Conv2d(dim // 4, dim, 3, 1, 1)) | ||||
| 
 | ||||
|         self.patch_embed = PatchEmbed( | ||||
|             img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, | ||||
|             norm_layer=None) | ||||
| 
 | ||||
|         self.patch_unembed = PatchUnEmbed( | ||||
|             img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, | ||||
|             norm_layer=None) | ||||
| 
 | ||||
|     def forward(self, x, x_size): | ||||
|         return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x | ||||
| 
 | ||||
|     def flops(self): | ||||
|         flops = 0 | ||||
|         flops += self.residual_group.flops() | ||||
|         H, W = self.input_resolution | ||||
|         flops += H * W * self.dim * self.dim * 9 | ||||
|         flops += self.patch_embed.flops() | ||||
|         flops += self.patch_unembed.flops() | ||||
| 
 | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| class PatchEmbed(nn.Module): | ||||
|     r""" Image to Patch Embedding | ||||
| 
 | ||||
|     Args: | ||||
|         img_size (int): Image size.  Default: 224. | ||||
|         patch_size (int): Patch token size. Default: 4. | ||||
|         in_chans (int): Number of input image channels. Default: 3. | ||||
|         embed_dim (int): Number of linear projection output channels. Default: 96. | ||||
|         norm_layer (nn.Module, optional): Normalization layer. Default: None | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): | ||||
|         super().__init__() | ||||
|         img_size = to_2tuple(img_size) | ||||
|         patch_size = to_2tuple(patch_size) | ||||
|         patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] | ||||
|         self.img_size = img_size | ||||
|         self.patch_size = patch_size | ||||
|         self.patches_resolution = patches_resolution | ||||
|         self.num_patches = patches_resolution[0] * patches_resolution[1] | ||||
| 
 | ||||
|         self.in_chans = in_chans | ||||
|         self.embed_dim = embed_dim | ||||
| 
 | ||||
|         if norm_layer is not None: | ||||
|             self.norm = norm_layer(embed_dim) | ||||
|         else: | ||||
|             self.norm = None | ||||
| 
 | ||||
|     def forward(self, x): | ||||
|         x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C | ||||
|         if self.norm is not None: | ||||
|             x = self.norm(x) | ||||
|         return x | ||||
| 
 | ||||
|     def flops(self): | ||||
|         flops = 0 | ||||
|         H, W = self.img_size | ||||
|         if self.norm is not None: | ||||
|             flops += H * W * self.embed_dim | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| class PatchUnEmbed(nn.Module): | ||||
|     r""" Image to Patch Unembedding | ||||
| 
 | ||||
|     Args: | ||||
|         img_size (int): Image size.  Default: 224. | ||||
|         patch_size (int): Patch token size. Default: 4. | ||||
|         in_chans (int): Number of input image channels. Default: 3. | ||||
|         embed_dim (int): Number of linear projection output channels. Default: 96. | ||||
|         norm_layer (nn.Module, optional): Normalization layer. Default: None | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): | ||||
|         super().__init__() | ||||
|         img_size = to_2tuple(img_size) | ||||
|         patch_size = to_2tuple(patch_size) | ||||
|         patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] | ||||
|         self.img_size = img_size | ||||
|         self.patch_size = patch_size | ||||
|         self.patches_resolution = patches_resolution | ||||
|         self.num_patches = patches_resolution[0] * patches_resolution[1] | ||||
| 
 | ||||
|         self.in_chans = in_chans | ||||
|         self.embed_dim = embed_dim | ||||
| 
 | ||||
|     def forward(self, x, x_size): | ||||
|         B, HW, C = x.shape | ||||
|         x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1])  # B Ph*Pw C | ||||
|         return x | ||||
| 
 | ||||
|     def flops(self): | ||||
|         flops = 0 | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| class Upsample(nn.Sequential): | ||||
|     """Upsample module. | ||||
| 
 | ||||
|     Args: | ||||
|         scale (int): Scale factor. Supported scales: 2^n and 3. | ||||
|         num_feat (int): Channel number of intermediate features. | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, scale, num_feat): | ||||
|         m = [] | ||||
|         if (scale & (scale - 1)) == 0:  # scale = 2^n | ||||
|             for _ in range(int(math.log(scale, 2))): | ||||
|                 m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | ||||
|                 m.append(nn.PixelShuffle(2)) | ||||
|         elif scale == 3: | ||||
|             m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | ||||
|             m.append(nn.PixelShuffle(3)) | ||||
|         else: | ||||
|             raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') | ||||
|         super(Upsample, self).__init__(*m) | ||||
| 
 | ||||
| 
 | ||||
| class UpsampleOneStep(nn.Sequential): | ||||
|     """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) | ||||
|        Used in lightweight SR to save parameters. | ||||
| 
 | ||||
|     Args: | ||||
|         scale (int): Scale factor. Supported scales: 2^n and 3. | ||||
|         num_feat (int): Channel number of intermediate features. | ||||
| 
 | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): | ||||
|         self.num_feat = num_feat | ||||
|         self.input_resolution = input_resolution | ||||
|         m = [] | ||||
|         m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1)) | ||||
|         m.append(nn.PixelShuffle(scale)) | ||||
|         super(UpsampleOneStep, self).__init__(*m) | ||||
| 
 | ||||
|     def flops(self): | ||||
|         H, W = self.input_resolution | ||||
|         flops = H * W * self.num_feat * 3 * 9 | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| class SwinIR(nn.Module): | ||||
|     r""" SwinIR | ||||
|         A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer. | ||||
| 
 | ||||
|     Args: | ||||
|         img_size (int | tuple(int)): Input image size. Default 64 | ||||
|         patch_size (int | tuple(int)): Patch size. Default: 1 | ||||
|         in_chans (int): Number of input image channels. Default: 3 | ||||
|         embed_dim (int): Patch embedding dimension. Default: 96 | ||||
|         depths (tuple(int)): Depth of each Swin Transformer layer. | ||||
|         num_heads (tuple(int)): Number of attention heads in different layers. | ||||
|         window_size (int): Window size. Default: 7 | ||||
|         mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | ||||
|         qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | ||||
|         qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None | ||||
|         drop_rate (float): Dropout rate. Default: 0 | ||||
|         attn_drop_rate (float): Attention dropout rate. Default: 0 | ||||
|         drop_path_rate (float): Stochastic depth rate. Default: 0.1 | ||||
|         norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | ||||
|         ape (bool): If True, add absolute position embedding to the patch embedding. Default: False | ||||
|         patch_norm (bool): If True, add normalization after patch embedding. Default: True | ||||
|         use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | ||||
|         upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction | ||||
|         img_range: Image range. 1. or 255. | ||||
|         upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None | ||||
|         resi_connection: The convolutional block before residual connection. '1conv'/'3conv' | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, img_size=64, patch_size=1, in_chans=3, | ||||
|                  embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], | ||||
|                  window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, | ||||
|                  drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, | ||||
|                  norm_layer=nn.LayerNorm, ape=False, patch_norm=True, | ||||
|                  use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', | ||||
|                  **kwargs): | ||||
|         super(SwinIR, self).__init__() | ||||
|         num_in_ch = in_chans | ||||
|         num_out_ch = in_chans | ||||
|         num_feat = 64 | ||||
|         self.img_range = img_range | ||||
|         if in_chans == 3: | ||||
|             rgb_mean = (0.4488, 0.4371, 0.4040) | ||||
|             self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) | ||||
|         else: | ||||
|             self.mean = torch.zeros(1, 1, 1, 1) | ||||
|         self.upscale = upscale | ||||
|         self.upsampler = upsampler | ||||
|         self.window_size = window_size | ||||
| 
 | ||||
|         ##################################################################################################### | ||||
|         ################################### 1, shallow feature extraction ################################### | ||||
|         self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) | ||||
| 
 | ||||
|         ##################################################################################################### | ||||
|         ################################### 2, deep feature extraction ###################################### | ||||
|         self.num_layers = len(depths) | ||||
|         self.embed_dim = embed_dim | ||||
|         self.ape = ape | ||||
|         self.patch_norm = patch_norm | ||||
|         self.num_features = embed_dim | ||||
|         self.mlp_ratio = mlp_ratio | ||||
| 
 | ||||
|         # split image into non-overlapping patches | ||||
|         self.patch_embed = PatchEmbed( | ||||
|             img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, | ||||
|             norm_layer=norm_layer if self.patch_norm else None) | ||||
|         num_patches = self.patch_embed.num_patches | ||||
|         patches_resolution = self.patch_embed.patches_resolution | ||||
|         self.patches_resolution = patches_resolution | ||||
| 
 | ||||
|         # merge non-overlapping patches into image | ||||
|         self.patch_unembed = PatchUnEmbed( | ||||
|             img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, | ||||
|             norm_layer=norm_layer if self.patch_norm else None) | ||||
| 
 | ||||
|         # absolute position embedding | ||||
|         if self.ape: | ||||
|             self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | ||||
|             trunc_normal_(self.absolute_pos_embed, std=.02) | ||||
| 
 | ||||
|         self.pos_drop = nn.Dropout(p=drop_rate) | ||||
| 
 | ||||
|         # stochastic depth | ||||
|         dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule | ||||
| 
 | ||||
|         # build Residual Swin Transformer blocks (RSTB) | ||||
|         self.layers = nn.ModuleList() | ||||
|         for i_layer in range(self.num_layers): | ||||
|             layer = RSTB(dim=embed_dim, | ||||
|                          input_resolution=(patches_resolution[0], | ||||
|                                            patches_resolution[1]), | ||||
|                          depth=depths[i_layer], | ||||
|                          num_heads=num_heads[i_layer], | ||||
|                          window_size=window_size, | ||||
|                          mlp_ratio=self.mlp_ratio, | ||||
|                          qkv_bias=qkv_bias, qk_scale=qk_scale, | ||||
|                          drop=drop_rate, attn_drop=attn_drop_rate, | ||||
|                          drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],  # no impact on SR results | ||||
|                          norm_layer=norm_layer, | ||||
|                          downsample=None, | ||||
|                          use_checkpoint=use_checkpoint, | ||||
|                          img_size=img_size, | ||||
|                          patch_size=patch_size, | ||||
|                          resi_connection=resi_connection | ||||
| 
 | ||||
|                          ) | ||||
|             self.layers.append(layer) | ||||
|         self.norm = norm_layer(self.num_features) | ||||
| 
 | ||||
|         # build the last conv layer in deep feature extraction | ||||
|         if resi_connection == '1conv': | ||||
|             self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) | ||||
|         elif resi_connection == '3conv': | ||||
|             # to save parameters and memory | ||||
|             self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), | ||||
|                                                  nn.LeakyReLU(negative_slope=0.2, inplace=True), | ||||
|                                                  nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), | ||||
|                                                  nn.LeakyReLU(negative_slope=0.2, inplace=True), | ||||
|                                                  nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) | ||||
| 
 | ||||
|         ##################################################################################################### | ||||
|         ################################ 3, high quality image reconstruction ################################ | ||||
|         if self.upsampler == 'pixelshuffle': | ||||
|             # for classical SR | ||||
|             self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), | ||||
|                                                       nn.LeakyReLU(inplace=True)) | ||||
|             self.upsample = Upsample(upscale, num_feat) | ||||
|             self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | ||||
|         elif self.upsampler == 'pixelshuffledirect': | ||||
|             # for lightweight SR (to save parameters) | ||||
|             self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, | ||||
|                                             (patches_resolution[0], patches_resolution[1])) | ||||
|         elif self.upsampler == 'nearest+conv': | ||||
|             # for real-world SR (less artifacts) | ||||
|             self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), | ||||
|                                                       nn.LeakyReLU(inplace=True)) | ||||
|             self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | ||||
|             if self.upscale == 4: | ||||
|                 self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | ||||
|             self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | ||||
|             self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | ||||
|             self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | ||||
|         else: | ||||
|             # for image denoising and JPEG compression artifact reduction | ||||
|             self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) | ||||
| 
 | ||||
|         self.apply(self._init_weights) | ||||
| 
 | ||||
|     def _init_weights(self, m): | ||||
|         if isinstance(m, nn.Linear): | ||||
|             trunc_normal_(m.weight, std=.02) | ||||
|             if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|                 nn.init.constant_(m.bias, 0) | ||||
|         elif isinstance(m, nn.LayerNorm): | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|             nn.init.constant_(m.weight, 1.0) | ||||
| 
 | ||||
|     @torch.jit.ignore | ||||
|     def no_weight_decay(self): | ||||
|         return {'absolute_pos_embed'} | ||||
| 
 | ||||
|     @torch.jit.ignore | ||||
|     def no_weight_decay_keywords(self): | ||||
|         return {'relative_position_bias_table'} | ||||
| 
 | ||||
|     def check_image_size(self, x): | ||||
|         _, _, h, w = x.size() | ||||
|         mod_pad_h = (self.window_size - h % self.window_size) % self.window_size | ||||
|         mod_pad_w = (self.window_size - w % self.window_size) % self.window_size | ||||
|         x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') | ||||
|         return x | ||||
| 
 | ||||
|     def forward_features(self, x): | ||||
|         x_size = (x.shape[2], x.shape[3]) | ||||
|         x = self.patch_embed(x) | ||||
|         if self.ape: | ||||
|             x = x + self.absolute_pos_embed | ||||
|         x = self.pos_drop(x) | ||||
| 
 | ||||
|         for layer in self.layers: | ||||
|             x = layer(x, x_size) | ||||
| 
 | ||||
|         x = self.norm(x)  # B L C | ||||
|         x = self.patch_unembed(x, x_size) | ||||
| 
 | ||||
|         return x | ||||
| 
 | ||||
|     def forward(self, x): | ||||
|         H, W = x.shape[2:] | ||||
|         x = self.check_image_size(x) | ||||
|          | ||||
|         self.mean = self.mean.type_as(x) | ||||
|         x = (x - self.mean) * self.img_range | ||||
| 
 | ||||
|         if self.upsampler == 'pixelshuffle': | ||||
|             # for classical SR | ||||
|             x = self.conv_first(x) | ||||
|             x = self.conv_after_body(self.forward_features(x)) + x | ||||
|             x = self.conv_before_upsample(x) | ||||
|             x = self.conv_last(self.upsample(x)) | ||||
|         elif self.upsampler == 'pixelshuffledirect': | ||||
|             # for lightweight SR | ||||
|             x = self.conv_first(x) | ||||
|             x = self.conv_after_body(self.forward_features(x)) + x | ||||
|             x = self.upsample(x) | ||||
|         elif self.upsampler == 'nearest+conv': | ||||
|             # for real-world SR | ||||
|             x = self.conv_first(x) | ||||
|             x = self.conv_after_body(self.forward_features(x)) + x | ||||
|             x = self.conv_before_upsample(x) | ||||
|             x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) | ||||
|             if self.upscale == 4: | ||||
|                 x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) | ||||
|             x = self.conv_last(self.lrelu(self.conv_hr(x))) | ||||
|         else: | ||||
|             # for image denoising and JPEG compression artifact reduction | ||||
|             x_first = self.conv_first(x) | ||||
|             res = self.conv_after_body(self.forward_features(x_first)) + x_first | ||||
|             x = x + self.conv_last(res) | ||||
| 
 | ||||
|         x = x / self.img_range + self.mean | ||||
| 
 | ||||
|         return x[:, :, :H*self.upscale, :W*self.upscale] | ||||
| 
 | ||||
|     def flops(self): | ||||
|         flops = 0 | ||||
|         H, W = self.patches_resolution | ||||
|         flops += H * W * 3 * self.embed_dim * 9 | ||||
|         flops += self.patch_embed.flops() | ||||
|         for i, layer in enumerate(self.layers): | ||||
|             flops += layer.flops() | ||||
|         flops += H * W * 3 * self.embed_dim * self.embed_dim | ||||
|         flops += self.upsample.flops() | ||||
|         return flops | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|     upscale = 4 | ||||
|     window_size = 8 | ||||
|     height = (1024 // upscale // window_size + 1) * window_size | ||||
|     width = (720 // upscale // window_size + 1) * window_size | ||||
|     model = SwinIR(upscale=2, img_size=(height, width), | ||||
|                    window_size=window_size, img_range=1., depths=[6, 6, 6, 6], | ||||
|                    embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect') | ||||
|     print(model) | ||||
|     print(height, width, model.flops() / 1e9) | ||||
| 
 | ||||
|     x = torch.randn((1, 3, height, width)) | ||||
|     x = model(x) | ||||
|     print(x.shape) | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 C43H66N12O12S2
						C43H66N12O12S2