mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	Merge pull request #14353 from Nuullll/ipex-sdpa
[IPEX] Slice SDPA into smaller chunks
This commit is contained in:
		
						commit
						cba6fba123
					
				| @ -27,6 +27,71 @@ def torch_xpu_gc(): | |||||||
| 
 | 
 | ||||||
| has_xpu = check_for_xpu() | has_xpu = check_for_xpu() | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
|  | # Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627 | ||||||
|  | # Here we implement a slicing algorithm to split large batch size into smaller chunks, | ||||||
|  | # so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT. | ||||||
|  | # The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G, | ||||||
|  | # which is the best trade-off between VRAM usage and performance. | ||||||
|  | ARC_SINGLE_ALLOCATION_LIMIT = {} | ||||||
|  | orig_sdp_attn_func = torch.nn.functional.scaled_dot_product_attention | ||||||
|  | def torch_xpu_scaled_dot_product_attention( | ||||||
|  |     query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, *args, **kwargs | ||||||
|  | ): | ||||||
|  |     # cast to same dtype first | ||||||
|  |     key = key.to(query.dtype) | ||||||
|  |     value = value.to(query.dtype) | ||||||
|  | 
 | ||||||
|  |     N = query.shape[:-2]  # Batch size | ||||||
|  |     L = query.size(-2)  # Target sequence length | ||||||
|  |     E = query.size(-1)  # Embedding dimension of the query and key | ||||||
|  |     S = key.size(-2)  # Source sequence length | ||||||
|  |     Ev = value.size(-1)  # Embedding dimension of the value | ||||||
|  | 
 | ||||||
|  |     total_batch_size = torch.numel(torch.empty(N)) | ||||||
|  |     device_id = query.device.index | ||||||
|  |     if device_id not in ARC_SINGLE_ALLOCATION_LIMIT: | ||||||
|  |         ARC_SINGLE_ALLOCATION_LIMIT[device_id] = min(torch.xpu.get_device_properties(device_id).total_memory // 8, 4 * 1024 * 1024 * 1024) | ||||||
|  |     batch_size_limit = max(1, ARC_SINGLE_ALLOCATION_LIMIT[device_id] // (L * S * query.element_size())) | ||||||
|  | 
 | ||||||
|  |     if total_batch_size <= batch_size_limit: | ||||||
|  |         return orig_sdp_attn_func( | ||||||
|  |             query, | ||||||
|  |             key, | ||||||
|  |             value, | ||||||
|  |             attn_mask, | ||||||
|  |             dropout_p, | ||||||
|  |             is_causal, | ||||||
|  |             *args, **kwargs | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |     query = torch.reshape(query, (-1, L, E)) | ||||||
|  |     key = torch.reshape(key, (-1, S, E)) | ||||||
|  |     value = torch.reshape(value, (-1, S, Ev)) | ||||||
|  |     if attn_mask is not None: | ||||||
|  |         attn_mask = attn_mask.view(-1, L, S) | ||||||
|  |     chunk_count = (total_batch_size + batch_size_limit - 1) // batch_size_limit | ||||||
|  |     outputs = [] | ||||||
|  |     for i in range(chunk_count): | ||||||
|  |         attn_mask_chunk = ( | ||||||
|  |             None | ||||||
|  |             if attn_mask is None | ||||||
|  |             else attn_mask[i * batch_size_limit : (i + 1) * batch_size_limit, :, :] | ||||||
|  |         ) | ||||||
|  |         chunk_output = orig_sdp_attn_func( | ||||||
|  |             query[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], | ||||||
|  |             key[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], | ||||||
|  |             value[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], | ||||||
|  |             attn_mask_chunk, | ||||||
|  |             dropout_p, | ||||||
|  |             is_causal, | ||||||
|  |             *args, **kwargs | ||||||
|  |         ) | ||||||
|  |         outputs.append(chunk_output) | ||||||
|  |     result = torch.cat(outputs, dim=0) | ||||||
|  |     return torch.reshape(result, (*N, L, Ev)) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
| if has_xpu: | if has_xpu: | ||||||
|     # W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device |     # W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device | ||||||
|     CondFunc('torch.Generator', |     CondFunc('torch.Generator', | ||||||
| @ -55,5 +120,5 @@ if has_xpu: | |||||||
|         lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out), |         lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out), | ||||||
|         lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors)) |         lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors)) | ||||||
|     CondFunc('torch.nn.functional.scaled_dot_product_attention', |     CondFunc('torch.nn.functional.scaled_dot_product_attention', | ||||||
|         lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: orig_func(query, key.to(query.dtype), value.to(query.dtype), attn_mask, dropout_p, is_causal), |         lambda orig_func, *args, **kwargs: torch_xpu_scaled_dot_product_attention(*args, **kwargs), | ||||||
|         lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: query.dtype != key.dtype or query.dtype != value.dtype) |         lambda orig_func, query, *args, **kwargs: query.is_xpu) | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 AUTOMATIC1111
						AUTOMATIC1111