mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 12:03:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			171 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
 | 
						|
from modules import devices, rng_philox, shared
 | 
						|
 | 
						|
 | 
						|
def randn(seed, shape, generator=None):
 | 
						|
    """Generate a tensor with random numbers from a normal distribution using seed.
 | 
						|
 | 
						|
    Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed."""
 | 
						|
 | 
						|
    manual_seed(seed)
 | 
						|
 | 
						|
    if shared.opts.randn_source == "NV":
 | 
						|
        return torch.asarray((generator or nv_rng).randn(shape), device=devices.device)
 | 
						|
 | 
						|
    if shared.opts.randn_source == "CPU" or devices.device.type == 'mps':
 | 
						|
        return torch.randn(shape, device=devices.cpu, generator=generator).to(devices.device)
 | 
						|
 | 
						|
    return torch.randn(shape, device=devices.device, generator=generator)
 | 
						|
 | 
						|
 | 
						|
def randn_local(seed, shape):
 | 
						|
    """Generate a tensor with random numbers from a normal distribution using seed.
 | 
						|
 | 
						|
    Does not change the global random number generator. You can only generate the seed's first tensor using this function."""
 | 
						|
 | 
						|
    if shared.opts.randn_source == "NV":
 | 
						|
        rng = rng_philox.Generator(seed)
 | 
						|
        return torch.asarray(rng.randn(shape), device=devices.device)
 | 
						|
 | 
						|
    local_device = devices.cpu if shared.opts.randn_source == "CPU" or devices.device.type == 'mps' else devices.device
 | 
						|
    local_generator = torch.Generator(local_device).manual_seed(int(seed))
 | 
						|
    return torch.randn(shape, device=local_device, generator=local_generator).to(devices.device)
 | 
						|
 | 
						|
 | 
						|
def randn_like(x):
 | 
						|
    """Generate a tensor with random numbers from a normal distribution using the previously initialized generator.
 | 
						|
 | 
						|
    Use either randn() or manual_seed() to initialize the generator."""
 | 
						|
 | 
						|
    if shared.opts.randn_source == "NV":
 | 
						|
        return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype)
 | 
						|
 | 
						|
    if shared.opts.randn_source == "CPU" or x.device.type == 'mps':
 | 
						|
        return torch.randn_like(x, device=devices.cpu).to(x.device)
 | 
						|
 | 
						|
    return torch.randn_like(x)
 | 
						|
 | 
						|
 | 
						|
def randn_without_seed(shape, generator=None):
 | 
						|
    """Generate a tensor with random numbers from a normal distribution using the previously initialized generator.
 | 
						|
 | 
						|
    Use either randn() or manual_seed() to initialize the generator."""
 | 
						|
 | 
						|
    if shared.opts.randn_source == "NV":
 | 
						|
        return torch.asarray((generator or nv_rng).randn(shape), device=devices.device)
 | 
						|
 | 
						|
    if shared.opts.randn_source == "CPU" or devices.device.type == 'mps':
 | 
						|
        return torch.randn(shape, device=devices.cpu, generator=generator).to(devices.device)
 | 
						|
 | 
						|
    return torch.randn(shape, device=devices.device, generator=generator)
 | 
						|
 | 
						|
 | 
						|
def manual_seed(seed):
 | 
						|
    """Set up a global random number generator using the specified seed."""
 | 
						|
 | 
						|
    if shared.opts.randn_source == "NV":
 | 
						|
        global nv_rng
 | 
						|
        nv_rng = rng_philox.Generator(seed)
 | 
						|
        return
 | 
						|
 | 
						|
    torch.manual_seed(seed)
 | 
						|
 | 
						|
 | 
						|
def create_generator(seed):
 | 
						|
    if shared.opts.randn_source == "NV":
 | 
						|
        return rng_philox.Generator(seed)
 | 
						|
 | 
						|
    device = devices.cpu if shared.opts.randn_source == "CPU" or devices.device.type == 'mps' else devices.device
 | 
						|
    generator = torch.Generator(device).manual_seed(int(seed))
 | 
						|
    return generator
 | 
						|
 | 
						|
 | 
						|
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
 | 
						|
def slerp(val, low, high):
 | 
						|
    low_norm = low/torch.norm(low, dim=1, keepdim=True)
 | 
						|
    high_norm = high/torch.norm(high, dim=1, keepdim=True)
 | 
						|
    dot = (low_norm*high_norm).sum(1)
 | 
						|
 | 
						|
    if dot.mean() > 0.9995:
 | 
						|
        return low * val + high * (1 - val)
 | 
						|
 | 
						|
    omega = torch.acos(dot)
 | 
						|
    so = torch.sin(omega)
 | 
						|
    res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
 | 
						|
    return res
 | 
						|
 | 
						|
 | 
						|
class ImageRNG:
 | 
						|
    def __init__(self, shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0):
 | 
						|
        self.shape = tuple(map(int, shape))
 | 
						|
        self.seeds = seeds
 | 
						|
        self.subseeds = subseeds
 | 
						|
        self.subseed_strength = subseed_strength
 | 
						|
        self.seed_resize_from_h = seed_resize_from_h
 | 
						|
        self.seed_resize_from_w = seed_resize_from_w
 | 
						|
 | 
						|
        self.generators = [create_generator(seed) for seed in seeds]
 | 
						|
 | 
						|
        self.is_first = True
 | 
						|
 | 
						|
    def first(self):
 | 
						|
        noise_shape = self.shape if self.seed_resize_from_h <= 0 or self.seed_resize_from_w <= 0 else (self.shape[0], int(self.seed_resize_from_h) // 8, int(self.seed_resize_from_w // 8))
 | 
						|
 | 
						|
        xs = []
 | 
						|
 | 
						|
        for i, (seed, generator) in enumerate(zip(self.seeds, self.generators)):
 | 
						|
            subnoise = None
 | 
						|
            if self.subseeds is not None and self.subseed_strength != 0:
 | 
						|
                subseed = 0 if i >= len(self.subseeds) else self.subseeds[i]
 | 
						|
                subnoise = randn(subseed, noise_shape)
 | 
						|
 | 
						|
            if noise_shape != self.shape:
 | 
						|
                noise = randn(seed, noise_shape)
 | 
						|
            else:
 | 
						|
                noise = randn(seed, self.shape, generator=generator)
 | 
						|
 | 
						|
            if subnoise is not None:
 | 
						|
                noise = slerp(self.subseed_strength, noise, subnoise)
 | 
						|
 | 
						|
            if noise_shape != self.shape:
 | 
						|
                x = randn(seed, self.shape, generator=generator)
 | 
						|
                dx = (self.shape[2] - noise_shape[2]) // 2
 | 
						|
                dy = (self.shape[1] - noise_shape[1]) // 2
 | 
						|
                w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
 | 
						|
                h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
 | 
						|
                tx = 0 if dx < 0 else dx
 | 
						|
                ty = 0 if dy < 0 else dy
 | 
						|
                dx = max(-dx, 0)
 | 
						|
                dy = max(-dy, 0)
 | 
						|
 | 
						|
                x[:, ty:ty + h, tx:tx + w] = noise[:, dy:dy + h, dx:dx + w]
 | 
						|
                noise = x
 | 
						|
 | 
						|
            xs.append(noise)
 | 
						|
 | 
						|
        eta_noise_seed_delta = shared.opts.eta_noise_seed_delta or 0
 | 
						|
        if eta_noise_seed_delta:
 | 
						|
            self.generators = [create_generator(seed + eta_noise_seed_delta) for seed in self.seeds]
 | 
						|
 | 
						|
        return torch.stack(xs).to(shared.device)
 | 
						|
 | 
						|
    def next(self):
 | 
						|
        if self.is_first:
 | 
						|
            self.is_first = False
 | 
						|
            return self.first()
 | 
						|
 | 
						|
        xs = []
 | 
						|
        for generator in self.generators:
 | 
						|
            x = randn_without_seed(self.shape, generator=generator)
 | 
						|
            xs.append(x)
 | 
						|
 | 
						|
        return torch.stack(xs).to(shared.device)
 | 
						|
 | 
						|
 | 
						|
devices.randn = randn
 | 
						|
devices.randn_local = randn_local
 | 
						|
devices.randn_like = randn_like
 | 
						|
devices.randn_without_seed = randn_without_seed
 | 
						|
devices.manual_seed = manual_seed
 |