mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 12:03:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			92 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import dataclasses
 | 
						|
import torch
 | 
						|
import k_diffusion
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from modules import shared
 | 
						|
 | 
						|
 | 
						|
def to_d(x, sigma, denoised):
 | 
						|
    """Converts a denoiser output to a Karras ODE derivative."""
 | 
						|
    return (x - denoised) / sigma
 | 
						|
 | 
						|
 | 
						|
k_diffusion.sampling.to_d = to_d
 | 
						|
 | 
						|
 | 
						|
@dataclasses.dataclass
 | 
						|
class Scheduler:
 | 
						|
    name: str
 | 
						|
    label: str
 | 
						|
    function: any
 | 
						|
 | 
						|
    default_rho: float = -1
 | 
						|
    need_inner_model: bool = False
 | 
						|
    aliases: list = None
 | 
						|
 | 
						|
 | 
						|
def uniform(n, sigma_min, sigma_max, inner_model, device):
 | 
						|
    return inner_model.get_sigmas(n).to(device)
 | 
						|
 | 
						|
 | 
						|
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
 | 
						|
    start = inner_model.sigma_to_t(torch.tensor(sigma_max))
 | 
						|
    end = inner_model.sigma_to_t(torch.tensor(sigma_min))
 | 
						|
    sigs = [
 | 
						|
        inner_model.t_to_sigma(ts)
 | 
						|
        for ts in torch.linspace(start, end, n + 1)[:-1]
 | 
						|
    ]
 | 
						|
    sigs += [0.0]
 | 
						|
    return torch.FloatTensor(sigs).to(device)
 | 
						|
 | 
						|
 | 
						|
def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device):
 | 
						|
    # https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
 | 
						|
    def loglinear_interp(t_steps, num_steps):
 | 
						|
        """
 | 
						|
        Performs log-linear interpolation of a given array of decreasing numbers.
 | 
						|
        """
 | 
						|
        xs = np.linspace(0, 1, len(t_steps))
 | 
						|
        ys = np.log(t_steps[::-1])
 | 
						|
 | 
						|
        new_xs = np.linspace(0, 1, num_steps)
 | 
						|
        new_ys = np.interp(new_xs, xs, ys)
 | 
						|
 | 
						|
        interped_ys = np.exp(new_ys)[::-1].copy()
 | 
						|
        return interped_ys
 | 
						|
 | 
						|
    if shared.sd_model.is_sdxl:
 | 
						|
        sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
 | 
						|
    else:
 | 
						|
        # Default to SD 1.5 sigmas.
 | 
						|
        sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
 | 
						|
 | 
						|
    if n != len(sigmas):
 | 
						|
        sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
 | 
						|
    else:
 | 
						|
        sigmas.append(0.0)
 | 
						|
 | 
						|
    return torch.FloatTensor(sigmas).to(device)
 | 
						|
 | 
						|
 | 
						|
def kl_optimal(n, sigma_min, sigma_max, device):
 | 
						|
    alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
 | 
						|
    alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
 | 
						|
    step_indices = torch.arange(n + 1, device=device)
 | 
						|
    sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
 | 
						|
    return sigmas
 | 
						|
 | 
						|
 | 
						|
schedulers = [
 | 
						|
    Scheduler('automatic', 'Automatic', None),
 | 
						|
    Scheduler('uniform', 'Uniform', uniform, need_inner_model=True),
 | 
						|
    Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0),
 | 
						|
    Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
 | 
						|
    Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
 | 
						|
    Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
 | 
						|
    Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
 | 
						|
    Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
 | 
						|
]
 | 
						|
 | 
						|
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}
 |