mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			159 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from PIL import Image
 | 
						|
from basicsr.utils.download_util import load_file_from_url
 | 
						|
 | 
						|
import modules.esrgan_model_arch as arch
 | 
						|
from modules import shared, modelloader, images, devices
 | 
						|
from modules.upscaler import Upscaler, UpscalerData
 | 
						|
from modules.shared import opts
 | 
						|
 | 
						|
 | 
						|
def fix_model_layers(crt_model, pretrained_net):
 | 
						|
    # this code is adapted from https://github.com/xinntao/ESRGAN
 | 
						|
    if 'conv_first.weight' in pretrained_net:
 | 
						|
        return pretrained_net
 | 
						|
 | 
						|
    if 'model.0.weight' not in pretrained_net:
 | 
						|
        is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"]
 | 
						|
        if is_realesrgan:
 | 
						|
            raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.")
 | 
						|
        else:
 | 
						|
            raise Exception("The file is not a ESRGAN model.")
 | 
						|
 | 
						|
    crt_net = crt_model.state_dict()
 | 
						|
    load_net_clean = {}
 | 
						|
    for k, v in pretrained_net.items():
 | 
						|
        if k.startswith('module.'):
 | 
						|
            load_net_clean[k[7:]] = v
 | 
						|
        else:
 | 
						|
            load_net_clean[k] = v
 | 
						|
    pretrained_net = load_net_clean
 | 
						|
 | 
						|
    tbd = []
 | 
						|
    for k, v in crt_net.items():
 | 
						|
        tbd.append(k)
 | 
						|
 | 
						|
    # directly copy
 | 
						|
    for k, v in crt_net.items():
 | 
						|
        if k in pretrained_net and pretrained_net[k].size() == v.size():
 | 
						|
            crt_net[k] = pretrained_net[k]
 | 
						|
            tbd.remove(k)
 | 
						|
 | 
						|
    crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
 | 
						|
    crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
 | 
						|
 | 
						|
    for k in tbd.copy():
 | 
						|
        if 'RDB' in k:
 | 
						|
            ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
 | 
						|
            if '.weight' in k:
 | 
						|
                ori_k = ori_k.replace('.weight', '.0.weight')
 | 
						|
            elif '.bias' in k:
 | 
						|
                ori_k = ori_k.replace('.bias', '.0.bias')
 | 
						|
            crt_net[k] = pretrained_net[ori_k]
 | 
						|
            tbd.remove(k)
 | 
						|
 | 
						|
    crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight']
 | 
						|
    crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias']
 | 
						|
    crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
 | 
						|
    crt_net['upconv1.bias'] = pretrained_net['model.3.bias']
 | 
						|
    crt_net['upconv2.weight'] = pretrained_net['model.6.weight']
 | 
						|
    crt_net['upconv2.bias'] = pretrained_net['model.6.bias']
 | 
						|
    crt_net['HRconv.weight'] = pretrained_net['model.8.weight']
 | 
						|
    crt_net['HRconv.bias'] = pretrained_net['model.8.bias']
 | 
						|
    crt_net['conv_last.weight'] = pretrained_net['model.10.weight']
 | 
						|
    crt_net['conv_last.bias'] = pretrained_net['model.10.bias']
 | 
						|
 | 
						|
    return crt_net
 | 
						|
 | 
						|
class UpscalerESRGAN(Upscaler):
 | 
						|
    def __init__(self, dirname):
 | 
						|
        self.name = "ESRGAN"
 | 
						|
        self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
 | 
						|
        self.model_name = "ESRGAN_4x"
 | 
						|
        self.scalers = []
 | 
						|
        self.user_path = dirname
 | 
						|
        super().__init__()
 | 
						|
        model_paths = self.find_models(ext_filter=[".pt", ".pth"])
 | 
						|
        scalers = []
 | 
						|
        if len(model_paths) == 0:
 | 
						|
            scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
 | 
						|
            scalers.append(scaler_data)
 | 
						|
        for file in model_paths:
 | 
						|
            if "http" in file:
 | 
						|
                name = self.model_name
 | 
						|
            else:
 | 
						|
                name = modelloader.friendly_name(file)
 | 
						|
 | 
						|
            scaler_data = UpscalerData(name, file, self, 4)
 | 
						|
            self.scalers.append(scaler_data)
 | 
						|
 | 
						|
    def do_upscale(self, img, selected_model):
 | 
						|
        model = self.load_model(selected_model)
 | 
						|
        if model is None:
 | 
						|
            return img
 | 
						|
        model.to(devices.device_esrgan)
 | 
						|
        img = esrgan_upscale(model, img)
 | 
						|
        return img
 | 
						|
 | 
						|
    def load_model(self, path: str):
 | 
						|
        if "http" in path:
 | 
						|
            filename = load_file_from_url(url=self.model_url, model_dir=self.model_path,
 | 
						|
                                          file_name="%s.pth" % self.model_name,
 | 
						|
                                          progress=True)
 | 
						|
        else:
 | 
						|
            filename = path
 | 
						|
        if not os.path.exists(filename) or filename is None:
 | 
						|
            print("Unable to load %s from %s" % (self.model_path, filename))
 | 
						|
            return None
 | 
						|
 | 
						|
        pretrained_net = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
 | 
						|
        crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
 | 
						|
 | 
						|
        pretrained_net = fix_model_layers(crt_model, pretrained_net)
 | 
						|
        crt_model.load_state_dict(pretrained_net)
 | 
						|
        crt_model.eval()
 | 
						|
 | 
						|
        return crt_model
 | 
						|
 | 
						|
 | 
						|
def upscale_without_tiling(model, img):
 | 
						|
    img = np.array(img)
 | 
						|
    img = img[:, :, ::-1]
 | 
						|
    img = np.moveaxis(img, 2, 0) / 255
 | 
						|
    img = torch.from_numpy(img).float()
 | 
						|
    img = img.unsqueeze(0).to(devices.device_esrgan)
 | 
						|
    with torch.no_grad():
 | 
						|
        output = model(img)
 | 
						|
    output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
 | 
						|
    output = 255. * np.moveaxis(output, 0, 2)
 | 
						|
    output = output.astype(np.uint8)
 | 
						|
    output = output[:, :, ::-1]
 | 
						|
    return Image.fromarray(output, 'RGB')
 | 
						|
 | 
						|
 | 
						|
def esrgan_upscale(model, img):
 | 
						|
    if opts.ESRGAN_tile == 0:
 | 
						|
        return upscale_without_tiling(model, img)
 | 
						|
 | 
						|
    grid = images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
 | 
						|
    newtiles = []
 | 
						|
    scale_factor = 1
 | 
						|
 | 
						|
    for y, h, row in grid.tiles:
 | 
						|
        newrow = []
 | 
						|
        for tiledata in row:
 | 
						|
            x, w, tile = tiledata
 | 
						|
 | 
						|
            output = upscale_without_tiling(model, tile)
 | 
						|
            scale_factor = output.width // tile.width
 | 
						|
 | 
						|
            newrow.append([x * scale_factor, w * scale_factor, output])
 | 
						|
        newtiles.append([y * scale_factor, h * scale_factor, newrow])
 | 
						|
 | 
						|
    newgrid = images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
 | 
						|
    output = images.combine_grid(newgrid)
 | 
						|
    return output
 |