mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-30 01:18:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			169 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import contextlib
 | |
| import os
 | |
| import sys
 | |
| import traceback
 | |
| from collections import namedtuple
 | |
| import re
 | |
| 
 | |
| import torch
 | |
| 
 | |
| from torchvision import transforms
 | |
| from torchvision.transforms.functional import InterpolationMode
 | |
| 
 | |
| import modules.shared as shared
 | |
| from modules import devices, paths, lowvram
 | |
| 
 | |
| blip_image_eval_size = 384
 | |
| blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
 | |
| clip_model_name = 'ViT-L/14'
 | |
| 
 | |
| Category = namedtuple("Category", ["name", "topn", "items"])
 | |
| 
 | |
| re_topn = re.compile(r"\.top(\d+)\.")
 | |
| 
 | |
| 
 | |
| class InterrogateModels:
 | |
|     blip_model = None
 | |
|     clip_model = None
 | |
|     clip_preprocess = None
 | |
|     categories = None
 | |
|     dtype = None
 | |
| 
 | |
|     def __init__(self, content_dir):
 | |
|         self.categories = []
 | |
| 
 | |
|         if os.path.exists(content_dir):
 | |
|             for filename in os.listdir(content_dir):
 | |
|                 m = re_topn.search(filename)
 | |
|                 topn = 1 if m is None else int(m.group(1))
 | |
| 
 | |
|                 with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file:
 | |
|                     lines = [x.strip() for x in file.readlines()]
 | |
| 
 | |
|                 self.categories.append(Category(name=filename, topn=topn, items=lines))
 | |
| 
 | |
|     def load_blip_model(self):
 | |
|         import models.blip
 | |
| 
 | |
|         blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
 | |
|         blip_model.eval()
 | |
| 
 | |
|         return blip_model
 | |
| 
 | |
|     def load_clip_model(self):
 | |
|         import clip
 | |
| 
 | |
|         model, preprocess = clip.load(clip_model_name)
 | |
|         model.eval()
 | |
|         model = model.to(shared.device)
 | |
| 
 | |
|         return model, preprocess
 | |
| 
 | |
|     def load(self):
 | |
|         if self.blip_model is None:
 | |
|             self.blip_model = self.load_blip_model()
 | |
|             if not shared.cmd_opts.no_half:
 | |
|                 self.blip_model = self.blip_model.half()
 | |
| 
 | |
|         self.blip_model = self.blip_model.to(shared.device)
 | |
| 
 | |
|         if self.clip_model is None:
 | |
|             self.clip_model, self.clip_preprocess = self.load_clip_model()
 | |
|             if not shared.cmd_opts.no_half:
 | |
|                 self.clip_model = self.clip_model.half()
 | |
| 
 | |
|         self.clip_model = self.clip_model.to(shared.device)
 | |
| 
 | |
|         self.dtype = next(self.clip_model.parameters()).dtype
 | |
| 
 | |
|     def send_clip_to_ram(self):
 | |
|         if not shared.opts.interrogate_keep_models_in_memory:
 | |
|             if self.clip_model is not None:
 | |
|                 self.clip_model = self.clip_model.to(devices.cpu)
 | |
| 
 | |
|     def send_blip_to_ram(self):
 | |
|         if not shared.opts.interrogate_keep_models_in_memory:
 | |
|             if self.blip_model is not None:
 | |
|                 self.blip_model = self.blip_model.to(devices.cpu)
 | |
| 
 | |
|     def unload(self):
 | |
|         self.send_clip_to_ram()
 | |
|         self.send_blip_to_ram()
 | |
| 
 | |
|         devices.torch_gc()
 | |
| 
 | |
|     def rank(self, image_features, text_array, top_count=1):
 | |
|         import clip
 | |
| 
 | |
|         if shared.opts.interrogate_clip_dict_limit != 0:
 | |
|             text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
 | |
| 
 | |
|         top_count = min(top_count, len(text_array))
 | |
|         text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device)
 | |
|         text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
 | |
|         text_features /= text_features.norm(dim=-1, keepdim=True)
 | |
| 
 | |
|         similarity = torch.zeros((1, len(text_array))).to(shared.device)
 | |
|         for i in range(image_features.shape[0]):
 | |
|             similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
 | |
|         similarity /= image_features.shape[0]
 | |
| 
 | |
|         top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
 | |
|         return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
 | |
| 
 | |
|     def generate_caption(self, pil_image):
 | |
|         gpu_image = transforms.Compose([
 | |
|             transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
 | |
|             transforms.ToTensor(),
 | |
|             transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
 | |
|         ])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
 | |
| 
 | |
|         with torch.no_grad():
 | |
|             caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
 | |
| 
 | |
|         return caption[0]
 | |
| 
 | |
|     def interrogate(self, pil_image):
 | |
|         res = None
 | |
| 
 | |
|         try:
 | |
| 
 | |
|             if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
 | |
|                 lowvram.send_everything_to_cpu()
 | |
|                 devices.torch_gc()
 | |
| 
 | |
|             self.load()
 | |
| 
 | |
|             caption = self.generate_caption(pil_image)
 | |
|             self.send_blip_to_ram()
 | |
|             devices.torch_gc()
 | |
| 
 | |
|             res = caption
 | |
| 
 | |
|             cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
 | |
| 
 | |
|             precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
 | |
|             with torch.no_grad(), precision_scope("cuda"):
 | |
|                 image_features = self.clip_model.encode_image(cilp_image).type(self.dtype)
 | |
| 
 | |
|                 image_features /= image_features.norm(dim=-1, keepdim=True)
 | |
| 
 | |
|                 if shared.opts.interrogate_use_builtin_artists:
 | |
|                     artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0]
 | |
| 
 | |
|                     res += ", " + artist[0]
 | |
| 
 | |
|                 for name, topn, items in self.categories:
 | |
|                     matches = self.rank(image_features, items, top_count=topn)
 | |
|                     for match, score in matches:
 | |
|                         res += ", " + match
 | |
| 
 | |
|         except Exception:
 | |
|             print(f"Error interrogating", file=sys.stderr)
 | |
|             print(traceback.format_exc(), file=sys.stderr)
 | |
|             res += "<error>"
 | |
| 
 | |
|         self.unload()
 | |
| 
 | |
|         return res
 | 
