mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			100 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import math
 | 
						|
 | 
						|
import modules.scripts as scripts
 | 
						|
import gradio as gr
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
from modules import processing, shared, sd_samplers, images, devices
 | 
						|
from modules.processing import Processed
 | 
						|
from modules.shared import opts, cmd_opts, state
 | 
						|
 | 
						|
 | 
						|
class Script(scripts.Script):
 | 
						|
    def title(self):
 | 
						|
        return "SD upscale"
 | 
						|
 | 
						|
    def show(self, is_img2img):
 | 
						|
        return is_img2img
 | 
						|
 | 
						|
    def ui(self, is_img2img):
 | 
						|
        info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>")
 | 
						|
        overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64)
 | 
						|
        scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0)
 | 
						|
        upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
 | 
						|
 | 
						|
        return [info, overlap, upscaler_index, scale_factor]
 | 
						|
 | 
						|
    def run(self, p, _, overlap, upscaler_index, scale_factor):
 | 
						|
        processing.fix_seed(p)
 | 
						|
        upscaler = shared.sd_upscalers[upscaler_index]
 | 
						|
 | 
						|
        p.extra_generation_params["SD upscale overlap"] = overlap
 | 
						|
        p.extra_generation_params["SD upscale upscaler"] = upscaler.name
 | 
						|
 | 
						|
        initial_info = None
 | 
						|
        seed = p.seed
 | 
						|
 | 
						|
        init_img = p.init_images[0]
 | 
						|
        init_img = images.flatten(init_img, opts.img2img_background_color)
 | 
						|
 | 
						|
        if upscaler.name != "None":
 | 
						|
            img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
 | 
						|
        else:
 | 
						|
            img = init_img
 | 
						|
 | 
						|
        devices.torch_gc()
 | 
						|
 | 
						|
        grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)
 | 
						|
 | 
						|
        batch_size = p.batch_size
 | 
						|
        upscale_count = p.n_iter
 | 
						|
        p.n_iter = 1
 | 
						|
        p.do_not_save_grid = True
 | 
						|
        p.do_not_save_samples = True
 | 
						|
 | 
						|
        work = []
 | 
						|
 | 
						|
        for y, h, row in grid.tiles:
 | 
						|
            for tiledata in row:
 | 
						|
                work.append(tiledata[2])
 | 
						|
 | 
						|
        batch_count = math.ceil(len(work) / batch_size)
 | 
						|
        state.job_count = batch_count * upscale_count
 | 
						|
 | 
						|
        print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")
 | 
						|
 | 
						|
        result_images = []
 | 
						|
        for n in range(upscale_count):
 | 
						|
            start_seed = seed + n
 | 
						|
            p.seed = start_seed
 | 
						|
 | 
						|
            work_results = []
 | 
						|
            for i in range(batch_count):
 | 
						|
                p.batch_size = batch_size
 | 
						|
                p.init_images = work[i * batch_size:(i + 1) * batch_size]
 | 
						|
 | 
						|
                state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
 | 
						|
                processed = processing.process_images(p)
 | 
						|
 | 
						|
                if initial_info is None:
 | 
						|
                    initial_info = processed.info
 | 
						|
 | 
						|
                p.seed = processed.seed + 1
 | 
						|
                work_results += processed.images
 | 
						|
 | 
						|
            image_index = 0
 | 
						|
            for y, h, row in grid.tiles:
 | 
						|
                for tiledata in row:
 | 
						|
                    tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
 | 
						|
                    image_index += 1
 | 
						|
 | 
						|
            combined_image = images.combine_grid(grid)
 | 
						|
            result_images.append(combined_image)
 | 
						|
 | 
						|
            if opts.samples_save:
 | 
						|
                images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
 | 
						|
 | 
						|
        processed = Processed(p, result_images, seed, initial_info)
 | 
						|
 | 
						|
        return processed
 |