mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # this file is taken from https://github.com/xinntao/ESRGAN
 | |
| 
 | |
| import functools
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| import torch.nn.functional as F
 | |
| 
 | |
| 
 | |
| def make_layer(block, n_layers):
 | |
|     layers = []
 | |
|     for _ in range(n_layers):
 | |
|         layers.append(block())
 | |
|     return nn.Sequential(*layers)
 | |
| 
 | |
| 
 | |
| class ResidualDenseBlock_5C(nn.Module):
 | |
|     def __init__(self, nf=64, gc=32, bias=True):
 | |
|         super(ResidualDenseBlock_5C, self).__init__()
 | |
|         # gc: growth channel, i.e. intermediate channels
 | |
|         self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
 | |
|         self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
 | |
|         self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
 | |
|         self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
 | |
|         self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
 | |
|         self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
 | |
| 
 | |
|         # initialization
 | |
|         # mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x1 = self.lrelu(self.conv1(x))
 | |
|         x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
 | |
|         x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
 | |
|         x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
 | |
|         x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
 | |
|         return x5 * 0.2 + x
 | |
| 
 | |
| 
 | |
| class RRDB(nn.Module):
 | |
|     '''Residual in Residual Dense Block'''
 | |
| 
 | |
|     def __init__(self, nf, gc=32):
 | |
|         super(RRDB, self).__init__()
 | |
|         self.RDB1 = ResidualDenseBlock_5C(nf, gc)
 | |
|         self.RDB2 = ResidualDenseBlock_5C(nf, gc)
 | |
|         self.RDB3 = ResidualDenseBlock_5C(nf, gc)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         out = self.RDB1(x)
 | |
|         out = self.RDB2(out)
 | |
|         out = self.RDB3(out)
 | |
|         return out * 0.2 + x
 | |
| 
 | |
| 
 | |
| class RRDBNet(nn.Module):
 | |
|     def __init__(self, in_nc, out_nc, nf, nb, gc=32):
 | |
|         super(RRDBNet, self).__init__()
 | |
|         RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
 | |
| 
 | |
|         self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
 | |
|         self.RRDB_trunk = make_layer(RRDB_block_f, nb)
 | |
|         self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
 | |
|         #### upsampling
 | |
|         self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
 | |
|         self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
 | |
|         self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
 | |
|         self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
 | |
| 
 | |
|         self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         fea = self.conv_first(x)
 | |
|         trunk = self.trunk_conv(self.RRDB_trunk(fea))
 | |
|         fea = fea + trunk
 | |
| 
 | |
|         fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
 | |
|         fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
 | |
|         out = self.conv_last(self.lrelu(self.HRconv(fea)))
 | |
| 
 | |
|         return out
 | 
