mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			367 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			367 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import re
 | |
| from collections import namedtuple
 | |
| from typing import List
 | |
| import lark
 | |
| 
 | |
| # a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
 | |
| # will be represented with prompt_schedule like this (assuming steps=100):
 | |
| # [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
 | |
| # [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
 | |
| # [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
 | |
| # [75, 'fantasy landscape with a lake and an oak in background masterful']
 | |
| # [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
 | |
| 
 | |
| schedule_parser = lark.Lark(r"""
 | |
| !start: (prompt | /[][():]/+)*
 | |
| prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
 | |
| !emphasized: "(" prompt ")"
 | |
|         | "(" prompt ":" prompt ")"
 | |
|         | "[" prompt "]"
 | |
| scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
 | |
| alternate: "[" prompt ("|" prompt)+ "]"
 | |
| WHITESPACE: /\s+/
 | |
| plain: /([^\\\[\]():|]|\\.)+/
 | |
| %import common.SIGNED_NUMBER -> NUMBER
 | |
| """)
 | |
| 
 | |
| def get_learned_conditioning_prompt_schedules(prompts, steps):
 | |
|     """
 | |
|     >>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
 | |
|     >>> g("test")
 | |
|     [[10, 'test']]
 | |
|     >>> g("a [b:3]")
 | |
|     [[3, 'a '], [10, 'a b']]
 | |
|     >>> g("a [b: 3]")
 | |
|     [[3, 'a '], [10, 'a b']]
 | |
|     >>> g("a [[[b]]:2]")
 | |
|     [[2, 'a '], [10, 'a [[b]]']]
 | |
|     >>> g("[(a:2):3]")
 | |
|     [[3, ''], [10, '(a:2)']]
 | |
|     >>> g("a [b : c : 1] d")
 | |
|     [[1, 'a b  d'], [10, 'a  c  d']]
 | |
|     >>> g("a[b:[c:d:2]:1]e")
 | |
|     [[1, 'abe'], [2, 'ace'], [10, 'ade']]
 | |
|     >>> g("a [unbalanced")
 | |
|     [[10, 'a [unbalanced']]
 | |
|     >>> g("a [b:.5] c")
 | |
|     [[5, 'a  c'], [10, 'a b c']]
 | |
|     >>> g("a [{b|d{:.5] c")  # not handling this right now
 | |
|     [[5, 'a  c'], [10, 'a {b|d{ c']]
 | |
|     >>> g("((a][:b:c [d:3]")
 | |
|     [[3, '((a][:b:c '], [10, '((a][:b:c d']]
 | |
|     """
 | |
| 
 | |
|     def collect_steps(steps, tree):
 | |
|         l = [steps]
 | |
|         class CollectSteps(lark.Visitor):
 | |
|             def scheduled(self, tree):
 | |
|                 tree.children[-1] = float(tree.children[-1])
 | |
|                 if tree.children[-1] < 1:
 | |
|                     tree.children[-1] *= steps
 | |
|                 tree.children[-1] = min(steps, int(tree.children[-1]))
 | |
|                 l.append(tree.children[-1])
 | |
|             def alternate(self, tree):
 | |
|                 l.extend(range(1, steps+1))
 | |
|         CollectSteps().visit(tree)
 | |
|         return sorted(set(l))
 | |
| 
 | |
|     def at_step(step, tree):
 | |
|         class AtStep(lark.Transformer):
 | |
|             def scheduled(self, args):
 | |
|                 before, after, _, when = args
 | |
|                 yield before or () if step <= when else after
 | |
|             def alternate(self, args):
 | |
|                 yield next(args[(step - 1)%len(args)])
 | |
|             def start(self, args):
 | |
|                 def flatten(x):
 | |
|                     if type(x) == str:
 | |
|                         yield x
 | |
|                     else:
 | |
|                         for gen in x:
 | |
|                             yield from flatten(gen)
 | |
|                 return ''.join(flatten(args))
 | |
|             def plain(self, args):
 | |
|                 yield args[0].value
 | |
|             def __default__(self, data, children, meta):
 | |
|                 for child in children:
 | |
|                     yield from child
 | |
|         return AtStep().transform(tree)
 | |
| 
 | |
|     def get_schedule(prompt):
 | |
|         try:
 | |
|             tree = schedule_parser.parse(prompt)
 | |
|         except lark.exceptions.LarkError as e:
 | |
|             if 0:
 | |
|                 import traceback
 | |
|                 traceback.print_exc()
 | |
|             return [[steps, prompt]]
 | |
|         return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
 | |
| 
 | |
|     promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
 | |
|     return [promptdict[prompt] for prompt in prompts]
 | |
| 
 | |
| 
 | |
| ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
 | |
| 
 | |
| 
 | |
| def get_learned_conditioning(model, prompts, steps):
 | |
|     """converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
 | |
|     and the sampling step at which this condition is to be replaced by the next one.
 | |
| 
 | |
|     Input:
 | |
|     (model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
 | |
| 
 | |
|     Output:
 | |
|     [
 | |
|         [
 | |
|             ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886,  0.0229, -0.0523,  ..., -0.4901, -0.3066,  0.0674], ..., [ 0.3317, -0.5102, -0.4066,  ...,  0.4119, -0.7647, -1.0160]], device='cuda:0'))
 | |
|         ],
 | |
|         [
 | |
|             ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886,  0.0229, -0.0522,  ..., -0.4901, -0.3067,  0.0673], ..., [-0.0192,  0.3867, -0.4644,  ...,  0.1135, -0.3696, -0.4625]], device='cuda:0')),
 | |
|             ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886,  0.0229, -0.0522,  ..., -0.4901, -0.3067,  0.0673], ..., [-0.7352, -0.4356, -0.7888,  ...,  0.6994, -0.4312, -1.2593]], device='cuda:0'))
 | |
|         ]
 | |
|     ]
 | |
|     """
 | |
|     res = []
 | |
| 
 | |
|     prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
 | |
|     cache = {}
 | |
| 
 | |
|     for prompt, prompt_schedule in zip(prompts, prompt_schedules):
 | |
| 
 | |
|         cached = cache.get(prompt, None)
 | |
|         if cached is not None:
 | |
|             res.append(cached)
 | |
|             continue
 | |
| 
 | |
|         texts = [x[1] for x in prompt_schedule]
 | |
|         conds = model.get_learned_conditioning(texts)
 | |
| 
 | |
|         cond_schedule = []
 | |
|         for i, (end_at_step, text) in enumerate(prompt_schedule):
 | |
|             cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
 | |
| 
 | |
|         cache[prompt] = cond_schedule
 | |
|         res.append(cond_schedule)
 | |
| 
 | |
|     return res
 | |
| 
 | |
| 
 | |
| re_AND = re.compile(r"\bAND\b")
 | |
| re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
 | |
| 
 | |
| def get_multicond_prompt_list(prompts):
 | |
|     res_indexes = []
 | |
| 
 | |
|     prompt_flat_list = []
 | |
|     prompt_indexes = {}
 | |
| 
 | |
|     for prompt in prompts:
 | |
|         subprompts = re_AND.split(prompt)
 | |
| 
 | |
|         indexes = []
 | |
|         for subprompt in subprompts:
 | |
|             match = re_weight.search(subprompt)
 | |
| 
 | |
|             text, weight = match.groups() if match is not None else (subprompt, 1.0)
 | |
| 
 | |
|             weight = float(weight) if weight is not None else 1.0
 | |
| 
 | |
|             index = prompt_indexes.get(text, None)
 | |
|             if index is None:
 | |
|                 index = len(prompt_flat_list)
 | |
|                 prompt_flat_list.append(text)
 | |
|                 prompt_indexes[text] = index
 | |
| 
 | |
|             indexes.append((index, weight))
 | |
| 
 | |
|         res_indexes.append(indexes)
 | |
| 
 | |
|     return res_indexes, prompt_flat_list, prompt_indexes
 | |
| 
 | |
| 
 | |
| class ComposableScheduledPromptConditioning:
 | |
|     def __init__(self, schedules, weight=1.0):
 | |
|         self.schedules: List[ScheduledPromptConditioning] = schedules
 | |
|         self.weight: float = weight
 | |
| 
 | |
| 
 | |
| class MulticondLearnedConditioning:
 | |
|     def __init__(self, shape, batch):
 | |
|         self.shape: tuple = shape  # the shape field is needed to send this object to DDIM/PLMS
 | |
|         self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
 | |
| 
 | |
| def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
 | |
|     """same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
 | |
|     For each prompt, the list is obtained by splitting the prompt using the AND separator.
 | |
| 
 | |
|     https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
 | |
|     """
 | |
| 
 | |
|     res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
 | |
| 
 | |
|     learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
 | |
| 
 | |
|     res = []
 | |
|     for indexes in res_indexes:
 | |
|         res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
 | |
| 
 | |
|     return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
 | |
| 
 | |
| 
 | |
| def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
 | |
|     param = c[0][0].cond
 | |
|     res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
 | |
|     for i, cond_schedule in enumerate(c):
 | |
|         target_index = 0
 | |
|         for current, (end_at, cond) in enumerate(cond_schedule):
 | |
|             if current_step <= end_at:
 | |
|                 target_index = current
 | |
|                 break
 | |
|         res[i] = cond_schedule[target_index].cond
 | |
| 
 | |
|     return res
 | |
| 
 | |
| 
 | |
| def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
 | |
|     param = c.batch[0][0].schedules[0].cond
 | |
| 
 | |
|     tensors = []
 | |
|     conds_list = []
 | |
| 
 | |
|     for batch_no, composable_prompts in enumerate(c.batch):
 | |
|         conds_for_batch = []
 | |
| 
 | |
|         for cond_index, composable_prompt in enumerate(composable_prompts):
 | |
|             target_index = 0
 | |
|             for current, (end_at, cond) in enumerate(composable_prompt.schedules):
 | |
|                 if current_step <= end_at:
 | |
|                     target_index = current
 | |
|                     break
 | |
| 
 | |
|             conds_for_batch.append((len(tensors), composable_prompt.weight))
 | |
|             tensors.append(composable_prompt.schedules[target_index].cond)
 | |
| 
 | |
|         conds_list.append(conds_for_batch)
 | |
| 
 | |
|     # if prompts have wildly different lengths above the limit we'll get tensors fo different shapes
 | |
|     # and won't be able to torch.stack them. So this fixes that.
 | |
|     token_count = max([x.shape[0] for x in tensors])
 | |
|     for i in range(len(tensors)):
 | |
|         if tensors[i].shape[0] != token_count:
 | |
|             last_vector = tensors[i][-1:]
 | |
|             last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
 | |
|             tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
 | |
| 
 | |
|     return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
 | |
| 
 | |
| 
 | |
| re_attention = re.compile(r"""
 | |
| \\\(|
 | |
| \\\)|
 | |
| \\\[|
 | |
| \\]|
 | |
| \\\\|
 | |
| \\|
 | |
| \(|
 | |
| \[|
 | |
| :([+-]?[.\d]+)\)|
 | |
| \)|
 | |
| ]|
 | |
| [^\\()\[\]:]+|
 | |
| :
 | |
| """, re.X)
 | |
| 
 | |
| 
 | |
| def parse_prompt_attention(text):
 | |
|     """
 | |
|     Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
 | |
|     Accepted tokens are:
 | |
|       (abc) - increases attention to abc by a multiplier of 1.1
 | |
|       (abc:3.12) - increases attention to abc by a multiplier of 3.12
 | |
|       [abc] - decreases attention to abc by a multiplier of 1.1
 | |
|       \( - literal character '('
 | |
|       \[ - literal character '['
 | |
|       \) - literal character ')'
 | |
|       \] - literal character ']'
 | |
|       \\ - literal character '\'
 | |
|       anything else - just text
 | |
| 
 | |
|     >>> parse_prompt_attention('normal text')
 | |
|     [['normal text', 1.0]]
 | |
|     >>> parse_prompt_attention('an (important) word')
 | |
|     [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
 | |
|     >>> parse_prompt_attention('(unbalanced')
 | |
|     [['unbalanced', 1.1]]
 | |
|     >>> parse_prompt_attention('\(literal\]')
 | |
|     [['(literal]', 1.0]]
 | |
|     >>> parse_prompt_attention('(unnecessary)(parens)')
 | |
|     [['unnecessaryparens', 1.1]]
 | |
|     >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
 | |
|     [['a ', 1.0],
 | |
|      ['house', 1.5730000000000004],
 | |
|      [' ', 1.1],
 | |
|      ['on', 1.0],
 | |
|      [' a ', 1.1],
 | |
|      ['hill', 0.55],
 | |
|      [', sun, ', 1.1],
 | |
|      ['sky', 1.4641000000000006],
 | |
|      ['.', 1.1]]
 | |
|     """
 | |
| 
 | |
|     res = []
 | |
|     round_brackets = []
 | |
|     square_brackets = []
 | |
| 
 | |
|     round_bracket_multiplier = 1.1
 | |
|     square_bracket_multiplier = 1 / 1.1
 | |
| 
 | |
|     def multiply_range(start_position, multiplier):
 | |
|         for p in range(start_position, len(res)):
 | |
|             res[p][1] *= multiplier
 | |
| 
 | |
|     for m in re_attention.finditer(text):
 | |
|         text = m.group(0)
 | |
|         weight = m.group(1)
 | |
| 
 | |
|         if text.startswith('\\'):
 | |
|             res.append([text[1:], 1.0])
 | |
|         elif text == '(':
 | |
|             round_brackets.append(len(res))
 | |
|         elif text == '[':
 | |
|             square_brackets.append(len(res))
 | |
|         elif weight is not None and len(round_brackets) > 0:
 | |
|             multiply_range(round_brackets.pop(), float(weight))
 | |
|         elif text == ')' and len(round_brackets) > 0:
 | |
|             multiply_range(round_brackets.pop(), round_bracket_multiplier)
 | |
|         elif text == ']' and len(square_brackets) > 0:
 | |
|             multiply_range(square_brackets.pop(), square_bracket_multiplier)
 | |
|         else:
 | |
|             res.append([text, 1.0])
 | |
| 
 | |
|     for pos in round_brackets:
 | |
|         multiply_range(pos, round_bracket_multiplier)
 | |
| 
 | |
|     for pos in square_brackets:
 | |
|         multiply_range(pos, square_bracket_multiplier)
 | |
| 
 | |
|     if len(res) == 0:
 | |
|         res = [["", 1.0]]
 | |
| 
 | |
|     # merge runs of identical weights
 | |
|     i = 0
 | |
|     while i + 1 < len(res):
 | |
|         if res[i][1] == res[i + 1][1]:
 | |
|             res[i][0] += res[i + 1][0]
 | |
|             res.pop(i + 1)
 | |
|         else:
 | |
|             i += 1
 | |
| 
 | |
|     return res
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     import doctest
 | |
|     doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
 | |
| else:
 | |
|     import torch  # doctest faster
 | 
