mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			331 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			331 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| 
 | |
| from einops import repeat
 | |
| from omegaconf import ListConfig
 | |
| 
 | |
| import ldm.models.diffusion.ddpm
 | |
| import ldm.models.diffusion.ddim
 | |
| import ldm.models.diffusion.plms
 | |
| 
 | |
| from ldm.models.diffusion.ddpm import LatentDiffusion
 | |
| from ldm.models.diffusion.plms import PLMSSampler
 | |
| from ldm.models.diffusion.ddim import DDIMSampler, noise_like
 | |
| 
 | |
| # =================================================================================================
 | |
| # Monkey patch DDIMSampler methods from RunwayML repo directly.
 | |
| # Adapted from:
 | |
| # https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
 | |
| # =================================================================================================
 | |
| @torch.no_grad()
 | |
| def sample_ddim(self,
 | |
|             S,
 | |
|             batch_size,
 | |
|             shape,
 | |
|             conditioning=None,
 | |
|             callback=None,
 | |
|             normals_sequence=None,
 | |
|             img_callback=None,
 | |
|             quantize_x0=False,
 | |
|             eta=0.,
 | |
|             mask=None,
 | |
|             x0=None,
 | |
|             temperature=1.,
 | |
|             noise_dropout=0.,
 | |
|             score_corrector=None,
 | |
|             corrector_kwargs=None,
 | |
|             verbose=True,
 | |
|             x_T=None,
 | |
|             log_every_t=100,
 | |
|             unconditional_guidance_scale=1.,
 | |
|             unconditional_conditioning=None,
 | |
|             # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
 | |
|             **kwargs
 | |
|             ):
 | |
|     if conditioning is not None:
 | |
|         if isinstance(conditioning, dict):
 | |
|             ctmp = conditioning[list(conditioning.keys())[0]]
 | |
|             while isinstance(ctmp, list):
 | |
|                 ctmp = ctmp[0]
 | |
|             cbs = ctmp.shape[0]
 | |
|             if cbs != batch_size:
 | |
|                 print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
 | |
|         else:
 | |
|             if conditioning.shape[0] != batch_size:
 | |
|                 print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
 | |
| 
 | |
|     self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
 | |
|     # sampling
 | |
|     C, H, W = shape
 | |
|     size = (batch_size, C, H, W)
 | |
|     print(f'Data shape for DDIM sampling is {size}, eta {eta}')
 | |
| 
 | |
|     samples, intermediates = self.ddim_sampling(conditioning, size,
 | |
|                                                 callback=callback,
 | |
|                                                 img_callback=img_callback,
 | |
|                                                 quantize_denoised=quantize_x0,
 | |
|                                                 mask=mask, x0=x0,
 | |
|                                                 ddim_use_original_steps=False,
 | |
|                                                 noise_dropout=noise_dropout,
 | |
|                                                 temperature=temperature,
 | |
|                                                 score_corrector=score_corrector,
 | |
|                                                 corrector_kwargs=corrector_kwargs,
 | |
|                                                 x_T=x_T,
 | |
|                                                 log_every_t=log_every_t,
 | |
|                                                 unconditional_guidance_scale=unconditional_guidance_scale,
 | |
|                                                 unconditional_conditioning=unconditional_conditioning,
 | |
|                                                 )
 | |
|     return samples, intermediates
 | |
| 
 | |
| @torch.no_grad()
 | |
| def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
 | |
|                     temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
 | |
|                     unconditional_guidance_scale=1., unconditional_conditioning=None):
 | |
|     b, *_, device = *x.shape, x.device
 | |
| 
 | |
|     if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
 | |
|         e_t = self.model.apply_model(x, t, c)
 | |
|     else:
 | |
|         x_in = torch.cat([x] * 2)
 | |
|         t_in = torch.cat([t] * 2)
 | |
|         if isinstance(c, dict):
 | |
|             assert isinstance(unconditional_conditioning, dict)
 | |
|             c_in = dict()
 | |
|             for k in c:
 | |
|                 if isinstance(c[k], list):
 | |
|                     c_in[k] = [
 | |
|                         torch.cat([unconditional_conditioning[k][i], c[k][i]])
 | |
|                         for i in range(len(c[k]))
 | |
|                     ]
 | |
|                 else:
 | |
|                     c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
 | |
|         else:
 | |
|             c_in = torch.cat([unconditional_conditioning, c])
 | |
|         e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
 | |
|         e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
 | |
| 
 | |
|     if score_corrector is not None:
 | |
|         assert self.model.parameterization == "eps"
 | |
|         e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
 | |
| 
 | |
|     alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
 | |
|     alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
 | |
|     sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
 | |
|     sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
 | |
|     # select parameters corresponding to the currently considered timestep
 | |
|     a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
 | |
|     a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
 | |
|     sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
 | |
|     sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
 | |
| 
 | |
|     # current prediction for x_0
 | |
|     pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
 | |
|     if quantize_denoised:
 | |
|         pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
 | |
|     # direction pointing to x_t
 | |
|     dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
 | |
|     noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
 | |
|     if noise_dropout > 0.:
 | |
|         noise = torch.nn.functional.dropout(noise, p=noise_dropout)
 | |
|     x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
 | |
|     return x_prev, pred_x0
 | |
| 
 | |
| 
 | |
| # =================================================================================================
 | |
| # Monkey patch PLMSSampler methods.
 | |
| # This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
 | |
| # Adapted from:
 | |
| # https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
 | |
| # =================================================================================================
 | |
| @torch.no_grad()
 | |
| def sample_plms(self,
 | |
|             S,
 | |
|             batch_size,
 | |
|             shape,
 | |
|             conditioning=None,
 | |
|             callback=None,
 | |
|             normals_sequence=None,
 | |
|             img_callback=None,
 | |
|             quantize_x0=False,
 | |
|             eta=0.,
 | |
|             mask=None,
 | |
|             x0=None,
 | |
|             temperature=1.,
 | |
|             noise_dropout=0.,
 | |
|             score_corrector=None,
 | |
|             corrector_kwargs=None,
 | |
|             verbose=True,
 | |
|             x_T=None,
 | |
|             log_every_t=100,
 | |
|             unconditional_guidance_scale=1.,
 | |
|             unconditional_conditioning=None,
 | |
|             # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
 | |
|             **kwargs
 | |
|             ):
 | |
|     if conditioning is not None:
 | |
|         if isinstance(conditioning, dict):
 | |
|             ctmp = conditioning[list(conditioning.keys())[0]]
 | |
|             while isinstance(ctmp, list):
 | |
|                 ctmp = ctmp[0]
 | |
|             cbs = ctmp.shape[0]
 | |
|             if cbs != batch_size:
 | |
|                 print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
 | |
|         else:
 | |
|             if conditioning.shape[0] != batch_size:
 | |
|                 print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
 | |
| 
 | |
|     self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
 | |
|     # sampling
 | |
|     C, H, W = shape
 | |
|     size = (batch_size, C, H, W)
 | |
|     print(f'Data shape for PLMS sampling is {size}')
 | |
| 
 | |
|     samples, intermediates = self.plms_sampling(conditioning, size,
 | |
|                                                 callback=callback,
 | |
|                                                 img_callback=img_callback,
 | |
|                                                 quantize_denoised=quantize_x0,
 | |
|                                                 mask=mask, x0=x0,
 | |
|                                                 ddim_use_original_steps=False,
 | |
|                                                 noise_dropout=noise_dropout,
 | |
|                                                 temperature=temperature,
 | |
|                                                 score_corrector=score_corrector,
 | |
|                                                 corrector_kwargs=corrector_kwargs,
 | |
|                                                 x_T=x_T,
 | |
|                                                 log_every_t=log_every_t,
 | |
|                                                 unconditional_guidance_scale=unconditional_guidance_scale,
 | |
|                                                 unconditional_conditioning=unconditional_conditioning,
 | |
|                                                 )
 | |
|     return samples, intermediates
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
 | |
|                     temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
 | |
|                     unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
 | |
|     b, *_, device = *x.shape, x.device
 | |
| 
 | |
|     def get_model_output(x, t):
 | |
|         if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
 | |
|             e_t = self.model.apply_model(x, t, c)
 | |
|         else:
 | |
|             x_in = torch.cat([x] * 2)
 | |
|             t_in = torch.cat([t] * 2)
 | |
|             
 | |
|             if isinstance(c, dict):
 | |
|                 assert isinstance(unconditional_conditioning, dict)
 | |
|                 c_in = dict()
 | |
|                 for k in c:
 | |
|                     if isinstance(c[k], list):
 | |
|                         c_in[k] = [
 | |
|                             torch.cat([unconditional_conditioning[k][i], c[k][i]])
 | |
|                             for i in range(len(c[k]))
 | |
|                         ]
 | |
|                     else:
 | |
|                         c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
 | |
|             else:
 | |
|                 c_in = torch.cat([unconditional_conditioning, c])
 | |
| 
 | |
|             e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
 | |
|             e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
 | |
| 
 | |
|         if score_corrector is not None:
 | |
|             assert self.model.parameterization == "eps"
 | |
|             e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
 | |
| 
 | |
|         return e_t
 | |
| 
 | |
|     alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
 | |
|     alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
 | |
|     sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
 | |
|     sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
 | |
| 
 | |
|     def get_x_prev_and_pred_x0(e_t, index):
 | |
|         # select parameters corresponding to the currently considered timestep
 | |
|         a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
 | |
|         a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
 | |
|         sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
 | |
|         sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
 | |
| 
 | |
|         # current prediction for x_0
 | |
|         pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
 | |
|         if quantize_denoised:
 | |
|             pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
 | |
|         # direction pointing to x_t
 | |
|         dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
 | |
|         noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
 | |
|         if noise_dropout > 0.:
 | |
|             noise = torch.nn.functional.dropout(noise, p=noise_dropout)
 | |
|         x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
 | |
|         return x_prev, pred_x0
 | |
| 
 | |
|     e_t = get_model_output(x, t)
 | |
|     if len(old_eps) == 0:
 | |
|         # Pseudo Improved Euler (2nd order)
 | |
|         x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
 | |
|         e_t_next = get_model_output(x_prev, t_next)
 | |
|         e_t_prime = (e_t + e_t_next) / 2
 | |
|     elif len(old_eps) == 1:
 | |
|         # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|         e_t_prime = (3 * e_t - old_eps[-1]) / 2
 | |
|     elif len(old_eps) == 2:
 | |
|         # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|         e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
 | |
|     elif len(old_eps) >= 3:
 | |
|         # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|         e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
 | |
| 
 | |
|     x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
 | |
| 
 | |
|     return x_prev, pred_x0, e_t
 | |
|     
 | |
| # =================================================================================================
 | |
| # Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
 | |
| # Adapted from:
 | |
| # https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py
 | |
| # =================================================================================================
 | |
| 
 | |
| @torch.no_grad()
 | |
| def get_unconditional_conditioning(self, batch_size, null_label=None):
 | |
|     if null_label is not None:
 | |
|         xc = null_label
 | |
|         if isinstance(xc, ListConfig):
 | |
|             xc = list(xc)
 | |
|         if isinstance(xc, dict) or isinstance(xc, list):
 | |
|             c = self.get_learned_conditioning(xc)
 | |
|         else:
 | |
|             if hasattr(xc, "to"):
 | |
|                 xc = xc.to(self.device)
 | |
|             c = self.get_learned_conditioning(xc)
 | |
|     else:
 | |
|         # todo: get null label from cond_stage_model
 | |
|         raise NotImplementedError()
 | |
|     c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
 | |
|     return c
 | |
| 
 | |
| 
 | |
| class LatentInpaintDiffusion(LatentDiffusion):
 | |
|     def __init__(
 | |
|         self,
 | |
|         concat_keys=("mask", "masked_image"),
 | |
|         masked_image_key="masked_image",
 | |
|         *args,
 | |
|         **kwargs,
 | |
|     ):
 | |
|         super().__init__(*args, **kwargs)
 | |
|         self.masked_image_key = masked_image_key
 | |
|         assert self.masked_image_key in concat_keys
 | |
|         self.concat_keys = concat_keys
 | |
| 
 | |
| 
 | |
| def should_hijack_inpainting(checkpoint_info):
 | |
|     return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml")
 | |
| 
 | |
| 
 | |
| def do_inpainting_hijack():
 | |
|     ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
 | |
|     ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
 | |
| 
 | |
|     ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
 | |
|     ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
 | |
| 
 | |
|     ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
 | |
|     ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms | 
