mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			313 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			313 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import math
 | |
| import sys
 | |
| import traceback
 | |
| import importlib
 | |
| 
 | |
| import torch
 | |
| from torch import einsum
 | |
| 
 | |
| from ldm.util import default
 | |
| from einops import rearrange
 | |
| 
 | |
| from modules import shared
 | |
| from modules.hypernetworks import hypernetwork
 | |
| 
 | |
| 
 | |
| if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
 | |
|     try:
 | |
|         import xformers.ops
 | |
|         shared.xformers_available = True
 | |
|     except Exception:
 | |
|         print("Cannot import xformers", file=sys.stderr)
 | |
|         print(traceback.format_exc(), file=sys.stderr)
 | |
| 
 | |
| 
 | |
| # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
 | |
| def split_cross_attention_forward_v1(self, x, context=None, mask=None):
 | |
|     h = self.heads
 | |
| 
 | |
|     q_in = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
 | |
|     k_in = self.to_k(context_k)
 | |
|     v_in = self.to_v(context_v)
 | |
|     del context, context_k, context_v, x
 | |
| 
 | |
|     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
 | |
|     del q_in, k_in, v_in
 | |
| 
 | |
|     r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
 | |
|     for i in range(0, q.shape[0], 2):
 | |
|         end = i + 2
 | |
|         s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
 | |
|         s1 *= self.scale
 | |
| 
 | |
|         s2 = s1.softmax(dim=-1)
 | |
|         del s1
 | |
| 
 | |
|         r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
 | |
|         del s2
 | |
|     del q, k, v
 | |
| 
 | |
|     r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
 | |
|     del r1
 | |
| 
 | |
|     return self.to_out(r2)
 | |
| 
 | |
| 
 | |
| # taken from https://github.com/Doggettx/stable-diffusion and modified
 | |
| def split_cross_attention_forward(self, x, context=None, mask=None):
 | |
|     h = self.heads
 | |
| 
 | |
|     q_in = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
 | |
|     k_in = self.to_k(context_k)
 | |
|     v_in = self.to_v(context_v)
 | |
| 
 | |
|     k_in *= self.scale
 | |
| 
 | |
|     del context, x
 | |
| 
 | |
|     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
 | |
|     del q_in, k_in, v_in
 | |
| 
 | |
|     r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
 | |
| 
 | |
|     stats = torch.cuda.memory_stats(q.device)
 | |
|     mem_active = stats['active_bytes.all.current']
 | |
|     mem_reserved = stats['reserved_bytes.all.current']
 | |
|     mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
 | |
|     mem_free_torch = mem_reserved - mem_active
 | |
|     mem_free_total = mem_free_cuda + mem_free_torch
 | |
| 
 | |
|     gb = 1024 ** 3
 | |
|     tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
 | |
|     modifier = 3 if q.element_size() == 2 else 2.5
 | |
|     mem_required = tensor_size * modifier
 | |
|     steps = 1
 | |
| 
 | |
|     if mem_required > mem_free_total:
 | |
|         steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
 | |
|         # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
 | |
|         #       f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
 | |
| 
 | |
|     if steps > 64:
 | |
|         max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
 | |
|         raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
 | |
|                            f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
 | |
| 
 | |
|     slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
 | |
|     for i in range(0, q.shape[1], slice_size):
 | |
|         end = i + slice_size
 | |
|         s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
 | |
| 
 | |
|         s2 = s1.softmax(dim=-1, dtype=q.dtype)
 | |
|         del s1
 | |
| 
 | |
|         r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
 | |
|         del s2
 | |
| 
 | |
|     del q, k, v
 | |
| 
 | |
|     r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
 | |
|     del r1
 | |
| 
 | |
|     return self.to_out(r2)
 | |
| 
 | |
| 
 | |
| def check_for_psutil():
 | |
|     try:
 | |
|         spec = importlib.util.find_spec('psutil')
 | |
|         return spec is not None
 | |
|     except ModuleNotFoundError:
 | |
|         return False
 | |
| 
 | |
| invokeAI_mps_available = check_for_psutil()
 | |
| 
 | |
| # -- Taken from https://github.com/invoke-ai/InvokeAI --
 | |
| if invokeAI_mps_available:
 | |
|     import psutil
 | |
|     mem_total_gb = psutil.virtual_memory().total // (1 << 30)
 | |
| 
 | |
| def einsum_op_compvis(q, k, v):
 | |
|     s = einsum('b i d, b j d -> b i j', q, k)
 | |
|     s = s.softmax(dim=-1, dtype=s.dtype)
 | |
|     return einsum('b i j, b j d -> b i d', s, v)
 | |
| 
 | |
| def einsum_op_slice_0(q, k, v, slice_size):
 | |
|     r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
 | |
|     for i in range(0, q.shape[0], slice_size):
 | |
|         end = i + slice_size
 | |
|         r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
 | |
|     return r
 | |
| 
 | |
| def einsum_op_slice_1(q, k, v, slice_size):
 | |
|     r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
 | |
|     for i in range(0, q.shape[1], slice_size):
 | |
|         end = i + slice_size
 | |
|         r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
 | |
|     return r
 | |
| 
 | |
| def einsum_op_mps_v1(q, k, v):
 | |
|     if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
 | |
|         return einsum_op_compvis(q, k, v)
 | |
|     else:
 | |
|         slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
 | |
|         return einsum_op_slice_1(q, k, v, slice_size)
 | |
| 
 | |
| def einsum_op_mps_v2(q, k, v):
 | |
|     if mem_total_gb > 8 and q.shape[1] <= 4096:
 | |
|         return einsum_op_compvis(q, k, v)
 | |
|     else:
 | |
|         return einsum_op_slice_0(q, k, v, 1)
 | |
| 
 | |
| def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
 | |
|     size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
 | |
|     if size_mb <= max_tensor_mb:
 | |
|         return einsum_op_compvis(q, k, v)
 | |
|     div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
 | |
|     if div <= q.shape[0]:
 | |
|         return einsum_op_slice_0(q, k, v, q.shape[0] // div)
 | |
|     return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
 | |
| 
 | |
| def einsum_op_cuda(q, k, v):
 | |
|     stats = torch.cuda.memory_stats(q.device)
 | |
|     mem_active = stats['active_bytes.all.current']
 | |
|     mem_reserved = stats['reserved_bytes.all.current']
 | |
|     mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
 | |
|     mem_free_torch = mem_reserved - mem_active
 | |
|     mem_free_total = mem_free_cuda + mem_free_torch
 | |
|     # Divide factor of safety as there's copying and fragmentation
 | |
|     return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
 | |
| 
 | |
| def einsum_op(q, k, v):
 | |
|     if q.device.type == 'cuda':
 | |
|         return einsum_op_cuda(q, k, v)
 | |
| 
 | |
|     if q.device.type == 'mps':
 | |
|         if mem_total_gb >= 32:
 | |
|             return einsum_op_mps_v1(q, k, v)
 | |
|         return einsum_op_mps_v2(q, k, v)
 | |
| 
 | |
|     # Smaller slices are faster due to L2/L3/SLC caches.
 | |
|     # Tested on i7 with 8MB L3 cache.
 | |
|     return einsum_op_tensor_mem(q, k, v, 32)
 | |
| 
 | |
| def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
 | |
|     h = self.heads
 | |
| 
 | |
|     q = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
 | |
|     k = self.to_k(context_k) * self.scale
 | |
|     v = self.to_v(context_v)
 | |
|     del context, context_k, context_v, x
 | |
| 
 | |
|     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
 | |
|     r = einsum_op(q, k, v)
 | |
|     return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
 | |
| 
 | |
| # -- End of code from https://github.com/invoke-ai/InvokeAI --
 | |
| 
 | |
| def xformers_attention_forward(self, x, context=None, mask=None):
 | |
|     h = self.heads
 | |
|     q_in = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
 | |
|     k_in = self.to_k(context_k)
 | |
|     v_in = self.to_v(context_v)
 | |
| 
 | |
|     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
 | |
|     del q_in, k_in, v_in
 | |
|     out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
 | |
| 
 | |
|     out = rearrange(out, 'b n h d -> b n (h d)', h=h)
 | |
|     return self.to_out(out)
 | |
| 
 | |
| def cross_attention_attnblock_forward(self, x):
 | |
|         h_ = x
 | |
|         h_ = self.norm(h_)
 | |
|         q1 = self.q(h_)
 | |
|         k1 = self.k(h_)
 | |
|         v = self.v(h_)
 | |
| 
 | |
|         # compute attention
 | |
|         b, c, h, w = q1.shape
 | |
| 
 | |
|         q2 = q1.reshape(b, c, h*w)
 | |
|         del q1
 | |
| 
 | |
|         q = q2.permute(0, 2, 1)   # b,hw,c
 | |
|         del q2
 | |
| 
 | |
|         k = k1.reshape(b, c, h*w) # b,c,hw
 | |
|         del k1
 | |
| 
 | |
|         h_ = torch.zeros_like(k, device=q.device)
 | |
| 
 | |
|         stats = torch.cuda.memory_stats(q.device)
 | |
|         mem_active = stats['active_bytes.all.current']
 | |
|         mem_reserved = stats['reserved_bytes.all.current']
 | |
|         mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
 | |
|         mem_free_torch = mem_reserved - mem_active
 | |
|         mem_free_total = mem_free_cuda + mem_free_torch
 | |
| 
 | |
|         tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
 | |
|         mem_required = tensor_size * 2.5
 | |
|         steps = 1
 | |
| 
 | |
|         if mem_required > mem_free_total:
 | |
|             steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
 | |
| 
 | |
|         slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
 | |
|         for i in range(0, q.shape[1], slice_size):
 | |
|             end = i + slice_size
 | |
| 
 | |
|             w1 = torch.bmm(q[:, i:end], k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
 | |
|             w2 = w1 * (int(c)**(-0.5))
 | |
|             del w1
 | |
|             w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
 | |
|             del w2
 | |
| 
 | |
|             # attend to values
 | |
|             v1 = v.reshape(b, c, h*w)
 | |
|             w4 = w3.permute(0, 2, 1)   # b,hw,hw (first hw of k, second of q)
 | |
|             del w3
 | |
| 
 | |
|             h_[:, :, i:end] = torch.bmm(v1, w4)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
 | |
|             del v1, w4
 | |
| 
 | |
|         h2 = h_.reshape(b, c, h, w)
 | |
|         del h_
 | |
| 
 | |
|         h3 = self.proj_out(h2)
 | |
|         del h2
 | |
| 
 | |
|         h3 += x
 | |
| 
 | |
|         return h3
 | |
|     
 | |
| def xformers_attnblock_forward(self, x):
 | |
|     try:
 | |
|         h_ = x
 | |
|         h_ = self.norm(h_)
 | |
|         q = self.q(h_)
 | |
|         k = self.k(h_)
 | |
|         v = self.v(h_)
 | |
|         b, c, h, w = q.shape
 | |
|         q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
 | |
|         q = q.contiguous()
 | |
|         k = k.contiguous()
 | |
|         v = v.contiguous()
 | |
|         out = xformers.ops.memory_efficient_attention(q, k, v)
 | |
|         out = rearrange(out, 'b (h w) c -> b c h w', h=h)
 | |
|         out = self.proj_out(out)
 | |
|         return x + out
 | |
|     except NotImplementedError:
 | |
|         return cross_attention_attnblock_forward(self, x)
 | 
