mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 18:15:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			472 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			472 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from collections import namedtuple
 | |
| import numpy as np
 | |
| import torch
 | |
| import tqdm
 | |
| from PIL import Image
 | |
| import inspect
 | |
| import k_diffusion.sampling
 | |
| import ldm.models.diffusion.ddim
 | |
| import ldm.models.diffusion.plms
 | |
| from modules import prompt_parser, devices, processing, images
 | |
| 
 | |
| from modules.shared import opts, cmd_opts, state
 | |
| import modules.shared as shared
 | |
| 
 | |
| 
 | |
| SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
 | |
| 
 | |
| samplers_k_diffusion = [
 | |
|     ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
 | |
|     ('Euler', 'sample_euler', ['k_euler'], {}),
 | |
|     ('LMS', 'sample_lms', ['k_lms'], {}),
 | |
|     ('Heun', 'sample_heun', ['k_heun'], {}),
 | |
|     ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
 | |
|     ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
 | |
|     ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
 | |
|     ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
 | |
|     ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
 | |
|     ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
 | |
|     ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
 | |
| ]
 | |
| 
 | |
| samplers_data_k_diffusion = [
 | |
|     SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
 | |
|     for label, funcname, aliases, options in samplers_k_diffusion
 | |
|     if hasattr(k_diffusion.sampling, funcname)
 | |
| ]
 | |
| 
 | |
| all_samplers = [
 | |
|     *samplers_data_k_diffusion,
 | |
|     SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
 | |
|     SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
 | |
| ]
 | |
| 
 | |
| samplers = []
 | |
| samplers_for_img2img = []
 | |
| 
 | |
| 
 | |
| def create_sampler_with_index(list_of_configs, index, model):
 | |
|     config = list_of_configs[index]
 | |
|     sampler = config.constructor(model)
 | |
|     sampler.config = config
 | |
|     
 | |
|     return sampler
 | |
| 
 | |
| 
 | |
| def set_samplers():
 | |
|     global samplers, samplers_for_img2img
 | |
| 
 | |
|     hidden = set(opts.hide_samplers)
 | |
|     hidden_img2img = set(opts.hide_samplers + ['PLMS'])
 | |
| 
 | |
|     samplers = [x for x in all_samplers if x.name not in hidden]
 | |
|     samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
 | |
| 
 | |
| 
 | |
| set_samplers()
 | |
| 
 | |
| sampler_extra_params = {
 | |
|     'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
 | |
|     'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
 | |
|     'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
 | |
| }
 | |
| 
 | |
| 
 | |
| def setup_img2img_steps(p, steps=None):
 | |
|     if opts.img2img_fix_steps or steps is not None:
 | |
|         steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
 | |
|         t_enc = p.steps - 1
 | |
|     else:
 | |
|         steps = p.steps
 | |
|         t_enc = int(min(p.denoising_strength, 0.999) * steps)
 | |
| 
 | |
|     return steps, t_enc
 | |
| 
 | |
| 
 | |
| def single_sample_to_image(sample):
 | |
|     x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
 | |
|     x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
 | |
|     x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
 | |
|     x_sample = x_sample.astype(np.uint8)
 | |
|     return Image.fromarray(x_sample)
 | |
| 
 | |
| 
 | |
| def sample_to_image(samples):
 | |
|     return single_sample_to_image(samples[0])
 | |
| 
 | |
| 
 | |
| def samples_to_image_grid(samples):
 | |
|     return images.image_grid([single_sample_to_image(sample) for sample in samples])
 | |
| 
 | |
| 
 | |
| def store_latent(decoded):
 | |
|     state.current_latent = decoded
 | |
| 
 | |
|     if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
 | |
|         if not shared.parallel_processing_allowed:
 | |
|             shared.state.current_image = sample_to_image(decoded)
 | |
| 
 | |
| 
 | |
| class InterruptedException(BaseException):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class VanillaStableDiffusionSampler:
 | |
|     def __init__(self, constructor, sd_model):
 | |
|         self.sampler = constructor(sd_model)
 | |
|         self.orig_p_sample_ddim = self.sampler.p_sample_ddim if hasattr(self.sampler, 'p_sample_ddim') else self.sampler.p_sample_plms
 | |
|         self.mask = None
 | |
|         self.nmask = None
 | |
|         self.init_latent = None
 | |
|         self.sampler_noises = None
 | |
|         self.step = 0
 | |
|         self.stop_at = None
 | |
|         self.eta = None
 | |
|         self.default_eta = 0.0
 | |
|         self.config = None
 | |
|         self.last_latent = None
 | |
| 
 | |
|         self.conditioning_key = sd_model.model.conditioning_key
 | |
| 
 | |
|     def number_of_needed_noises(self, p):
 | |
|         return 0
 | |
| 
 | |
|     def launch_sampling(self, steps, func):
 | |
|         state.sampling_steps = steps
 | |
|         state.sampling_step = 0
 | |
| 
 | |
|         try:
 | |
|             return func()
 | |
|         except InterruptedException:
 | |
|             return self.last_latent
 | |
| 
 | |
|     def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
 | |
|         if state.interrupted or state.skipped:
 | |
|             raise InterruptedException
 | |
| 
 | |
|         if self.stop_at is not None and self.step > self.stop_at:
 | |
|             raise InterruptedException
 | |
| 
 | |
|         # Have to unwrap the inpainting conditioning here to perform pre-processing
 | |
|         image_conditioning = None
 | |
|         if isinstance(cond, dict):
 | |
|             image_conditioning = cond["c_concat"][0]
 | |
|             cond = cond["c_crossattn"][0]
 | |
|             unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
 | |
| 
 | |
|         conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
 | |
|         unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
 | |
| 
 | |
|         assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
 | |
|         cond = tensor
 | |
| 
 | |
|         # for DDIM, shapes must match, we can't just process cond and uncond independently;
 | |
|         # filling unconditional_conditioning with repeats of the last vector to match length is
 | |
|         # not 100% correct but should work well enough
 | |
|         if unconditional_conditioning.shape[1] < cond.shape[1]:
 | |
|             last_vector = unconditional_conditioning[:, -1:]
 | |
|             last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
 | |
|             unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
 | |
|         elif unconditional_conditioning.shape[1] > cond.shape[1]:
 | |
|             unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
 | |
| 
 | |
|         if self.mask is not None:
 | |
|             img_orig = self.sampler.model.q_sample(self.init_latent, ts)
 | |
|             x_dec = img_orig * self.mask + self.nmask * x_dec
 | |
| 
 | |
|         # Wrap the image conditioning back up since the DDIM code can accept the dict directly.
 | |
|         # Note that they need to be lists because it just concatenates them later.
 | |
|         if image_conditioning is not None:
 | |
|             cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
 | |
|             unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
 | |
| 
 | |
|         res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
 | |
| 
 | |
|         if self.mask is not None:
 | |
|             self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
 | |
|         else:
 | |
|             self.last_latent = res[1]
 | |
| 
 | |
|         store_latent(self.last_latent)
 | |
| 
 | |
|         self.step += 1
 | |
|         state.sampling_step = self.step
 | |
|         shared.total_tqdm.update()
 | |
| 
 | |
|         return res
 | |
| 
 | |
|     def initialize(self, p):
 | |
|         self.eta = p.eta if p.eta is not None else opts.eta_ddim
 | |
| 
 | |
|         for fieldname in ['p_sample_ddim', 'p_sample_plms']:
 | |
|             if hasattr(self.sampler, fieldname):
 | |
|                 setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
 | |
| 
 | |
|         self.mask = p.mask if hasattr(p, 'mask') else None
 | |
|         self.nmask = p.nmask if hasattr(p, 'nmask') else None
 | |
| 
 | |
|     def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
 | |
|         steps, t_enc = setup_img2img_steps(p, steps)
 | |
| 
 | |
|         self.initialize(p)
 | |
| 
 | |
|         # existing code fails with certain step counts, like 9
 | |
|         try:
 | |
|             self.sampler.make_schedule(ddim_num_steps=steps,  ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
 | |
|         except Exception:
 | |
|             self.sampler.make_schedule(ddim_num_steps=steps+1, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
 | |
| 
 | |
|         x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
 | |
| 
 | |
|         self.init_latent = x
 | |
|         self.last_latent = x
 | |
|         self.step = 0
 | |
| 
 | |
|         # Wrap the conditioning models with additional image conditioning for inpainting model
 | |
|         if image_conditioning is not None:
 | |
|             conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
 | |
|             unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
 | |
|             
 | |
|             
 | |
|         samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
 | |
| 
 | |
|         return samples
 | |
| 
 | |
|     def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
 | |
|         self.initialize(p)
 | |
| 
 | |
|         self.init_latent = None
 | |
|         self.last_latent = x
 | |
|         self.step = 0
 | |
| 
 | |
|         steps = steps or p.steps
 | |
| 
 | |
|         # Wrap the conditioning models with additional image conditioning for inpainting model
 | |
|         if image_conditioning is not None:
 | |
|             conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
 | |
|             unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
 | |
| 
 | |
|         # existing code fails with certain step counts, like 9
 | |
|         try:
 | |
|             samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
 | |
|         except Exception:
 | |
|             samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
 | |
| 
 | |
|         return samples_ddim
 | |
| 
 | |
| 
 | |
| class CFGDenoiser(torch.nn.Module):
 | |
|     def __init__(self, model):
 | |
|         super().__init__()
 | |
|         self.inner_model = model
 | |
|         self.mask = None
 | |
|         self.nmask = None
 | |
|         self.init_latent = None
 | |
|         self.step = 0
 | |
| 
 | |
|     def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
 | |
|         if state.interrupted or state.skipped:
 | |
|             raise InterruptedException
 | |
| 
 | |
|         conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
 | |
|         uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
 | |
| 
 | |
|         batch_size = len(conds_list)
 | |
|         repeats = [len(conds_list[i]) for i in range(batch_size)]
 | |
| 
 | |
|         x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
 | |
|         image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
 | |
|         sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
 | |
| 
 | |
|         if tensor.shape[1] == uncond.shape[1]:
 | |
|             cond_in = torch.cat([tensor, uncond])
 | |
| 
 | |
|             if shared.batch_cond_uncond:
 | |
|                 x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
 | |
|             else:
 | |
|                 x_out = torch.zeros_like(x_in)
 | |
|                 for batch_offset in range(0, x_out.shape[0], batch_size):
 | |
|                     a = batch_offset
 | |
|                     b = a + batch_size
 | |
|                     x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
 | |
|         else:
 | |
|             x_out = torch.zeros_like(x_in)
 | |
|             batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
 | |
|             for batch_offset in range(0, tensor.shape[0], batch_size):
 | |
|                 a = batch_offset
 | |
|                 b = min(a + batch_size, tensor.shape[0])
 | |
|                 x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
 | |
| 
 | |
|             x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
 | |
| 
 | |
|         denoised_uncond = x_out[-uncond.shape[0]:]
 | |
|         denoised = torch.clone(denoised_uncond)
 | |
| 
 | |
|         for i, conds in enumerate(conds_list):
 | |
|             for cond_index, weight in conds:
 | |
|                 denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
 | |
| 
 | |
|         if self.mask is not None:
 | |
|             denoised = self.init_latent * self.mask + self.nmask * denoised
 | |
| 
 | |
|         self.step += 1
 | |
| 
 | |
|         return denoised
 | |
| 
 | |
| 
 | |
| class TorchHijack:
 | |
|     def __init__(self, kdiff_sampler):
 | |
|         self.kdiff_sampler = kdiff_sampler
 | |
| 
 | |
|     def __getattr__(self, item):
 | |
|         if item == 'randn_like':
 | |
|             return self.kdiff_sampler.randn_like
 | |
| 
 | |
|         if hasattr(torch, item):
 | |
|             return getattr(torch, item)
 | |
| 
 | |
|         raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
 | |
| 
 | |
| 
 | |
| class KDiffusionSampler:
 | |
|     def __init__(self, funcname, sd_model):
 | |
|         self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
 | |
|         self.funcname = funcname
 | |
|         self.func = getattr(k_diffusion.sampling, self.funcname)
 | |
|         self.extra_params = sampler_extra_params.get(funcname, [])
 | |
|         self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
 | |
|         self.sampler_noises = None
 | |
|         self.sampler_noise_index = 0
 | |
|         self.stop_at = None
 | |
|         self.eta = None
 | |
|         self.default_eta = 1.0
 | |
|         self.config = None
 | |
|         self.last_latent = None
 | |
| 
 | |
|         self.conditioning_key = sd_model.model.conditioning_key
 | |
| 
 | |
|     def callback_state(self, d):
 | |
|         step = d['i']
 | |
|         latent = d["denoised"]
 | |
|         store_latent(latent)
 | |
|         self.last_latent = latent
 | |
| 
 | |
|         if self.stop_at is not None and step > self.stop_at:
 | |
|             raise InterruptedException
 | |
| 
 | |
|         state.sampling_step = step
 | |
|         shared.total_tqdm.update()
 | |
| 
 | |
|     def launch_sampling(self, steps, func):
 | |
|         state.sampling_steps = steps
 | |
|         state.sampling_step = 0
 | |
| 
 | |
|         try:
 | |
|             return func()
 | |
|         except InterruptedException:
 | |
|             return self.last_latent
 | |
| 
 | |
|     def number_of_needed_noises(self, p):
 | |
|         return p.steps
 | |
| 
 | |
|     def randn_like(self, x):
 | |
|         noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
 | |
| 
 | |
|         if noise is not None and x.shape == noise.shape:
 | |
|             res = noise
 | |
|         else:
 | |
|             res = torch.randn_like(x)
 | |
| 
 | |
|         self.sampler_noise_index += 1
 | |
|         return res
 | |
| 
 | |
|     def initialize(self, p):
 | |
|         self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
 | |
|         self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
 | |
|         self.model_wrap.step = 0
 | |
|         self.sampler_noise_index = 0
 | |
|         self.eta = p.eta or opts.eta_ancestral
 | |
| 
 | |
|         if self.sampler_noises is not None:
 | |
|             k_diffusion.sampling.torch = TorchHijack(self)
 | |
| 
 | |
|         extra_params_kwargs = {}
 | |
|         for param_name in self.extra_params:
 | |
|             if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
 | |
|                 extra_params_kwargs[param_name] = getattr(p, param_name)
 | |
| 
 | |
|         if 'eta' in inspect.signature(self.func).parameters:
 | |
|             extra_params_kwargs['eta'] = self.eta
 | |
| 
 | |
|         return extra_params_kwargs
 | |
| 
 | |
|     def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
 | |
|         steps, t_enc = setup_img2img_steps(p, steps)
 | |
| 
 | |
|         if p.sampler_noise_scheduler_override:
 | |
|             sigmas = p.sampler_noise_scheduler_override(steps)
 | |
|         elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
 | |
|             sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
 | |
|         else:
 | |
|             sigmas = self.model_wrap.get_sigmas(steps)
 | |
| 
 | |
|         sigma_sched = sigmas[steps - t_enc - 1:]
 | |
|         xi = x + noise * sigma_sched[0]
 | |
|         
 | |
|         extra_params_kwargs = self.initialize(p)
 | |
|         if 'sigma_min' in inspect.signature(self.func).parameters:
 | |
|             ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
 | |
|             extra_params_kwargs['sigma_min'] = sigma_sched[-2]
 | |
|         if 'sigma_max' in inspect.signature(self.func).parameters:
 | |
|             extra_params_kwargs['sigma_max'] = sigma_sched[0]
 | |
|         if 'n' in inspect.signature(self.func).parameters:
 | |
|             extra_params_kwargs['n'] = len(sigma_sched) - 1
 | |
|         if 'sigma_sched' in inspect.signature(self.func).parameters:
 | |
|             extra_params_kwargs['sigma_sched'] = sigma_sched
 | |
|         if 'sigmas' in inspect.signature(self.func).parameters:
 | |
|             extra_params_kwargs['sigmas'] = sigma_sched
 | |
| 
 | |
|         self.model_wrap_cfg.init_latent = x
 | |
|         self.last_latent = x
 | |
| 
 | |
|         samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
 | |
|             'cond': conditioning, 
 | |
|             'image_cond': image_conditioning, 
 | |
|             'uncond': unconditional_conditioning, 
 | |
|             'cond_scale': p.cfg_scale
 | |
|         }, disable=False, callback=self.callback_state, **extra_params_kwargs))
 | |
| 
 | |
|         return samples
 | |
| 
 | |
|     def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
 | |
|         steps = steps or p.steps
 | |
| 
 | |
|         if p.sampler_noise_scheduler_override:
 | |
|             sigmas = p.sampler_noise_scheduler_override(steps)
 | |
|         elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
 | |
|             sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
 | |
|         else:
 | |
|             sigmas = self.model_wrap.get_sigmas(steps)
 | |
| 
 | |
|         x = x * sigmas[0]
 | |
| 
 | |
|         extra_params_kwargs = self.initialize(p)
 | |
|         if 'sigma_min' in inspect.signature(self.func).parameters:
 | |
|             extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
 | |
|             extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
 | |
|             if 'n' in inspect.signature(self.func).parameters:
 | |
|                 extra_params_kwargs['n'] = steps
 | |
|         else:
 | |
|             extra_params_kwargs['sigmas'] = sigmas
 | |
| 
 | |
|         self.last_latent = x
 | |
|         samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
 | |
|             'cond': conditioning, 
 | |
|             'image_cond': image_conditioning, 
 | |
|             'uncond': unconditional_conditioning, 
 | |
|             'cond_scale': p.cfg_scale
 | |
|         }, disable=False, callback=self.callback_state, **extra_params_kwargs))
 | |
| 
 | |
|         return samples
 | |
| 
 | 
