mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 12:03:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os.path
 | 
						|
import sys
 | 
						|
import traceback
 | 
						|
 | 
						|
import PIL.Image
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from basicsr.utils.download_util import load_file_from_url
 | 
						|
 | 
						|
import modules.upscaler
 | 
						|
from modules import devices, modelloader
 | 
						|
from modules.scunet_model_arch import SCUNet as net
 | 
						|
 | 
						|
 | 
						|
class UpscalerScuNET(modules.upscaler.Upscaler):
 | 
						|
    def __init__(self, dirname):
 | 
						|
        self.name = "ScuNET"
 | 
						|
        self.model_name = "ScuNET GAN"
 | 
						|
        self.model_name2 = "ScuNET PSNR"
 | 
						|
        self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
 | 
						|
        self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
 | 
						|
        self.user_path = dirname
 | 
						|
        super().__init__()
 | 
						|
        model_paths = self.find_models(ext_filter=[".pth"])
 | 
						|
        scalers = []
 | 
						|
        add_model2 = True
 | 
						|
        for file in model_paths:
 | 
						|
            if "http" in file:
 | 
						|
                name = self.model_name
 | 
						|
            else:
 | 
						|
                name = modelloader.friendly_name(file)
 | 
						|
            if name == self.model_name2 or file == self.model_url2:
 | 
						|
                add_model2 = False
 | 
						|
            try:
 | 
						|
                scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
 | 
						|
                scalers.append(scaler_data)
 | 
						|
            except Exception:
 | 
						|
                print(f"Error loading ScuNET model: {file}", file=sys.stderr)
 | 
						|
                print(traceback.format_exc(), file=sys.stderr)
 | 
						|
        if add_model2:
 | 
						|
            scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
 | 
						|
            scalers.append(scaler_data2)
 | 
						|
        self.scalers = scalers
 | 
						|
 | 
						|
    def do_upscale(self, img: PIL.Image, selected_file):
 | 
						|
        torch.cuda.empty_cache()
 | 
						|
 | 
						|
        model = self.load_model(selected_file)
 | 
						|
        if model is None:
 | 
						|
            return img
 | 
						|
 | 
						|
        device = devices.device_scunet
 | 
						|
        img = np.array(img)
 | 
						|
        img = img[:, :, ::-1]
 | 
						|
        img = np.moveaxis(img, 2, 0) / 255
 | 
						|
        img = torch.from_numpy(img).float()
 | 
						|
        img = img.unsqueeze(0).to(device)
 | 
						|
 | 
						|
        img = img.to(device)
 | 
						|
        with torch.no_grad():
 | 
						|
            output = model(img)
 | 
						|
        output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
 | 
						|
        output = 255. * np.moveaxis(output, 0, 2)
 | 
						|
        output = output.astype(np.uint8)
 | 
						|
        output = output[:, :, ::-1]
 | 
						|
        torch.cuda.empty_cache()
 | 
						|
        return PIL.Image.fromarray(output, 'RGB')
 | 
						|
 | 
						|
    def load_model(self, path: str):
 | 
						|
        device = devices.device_scunet
 | 
						|
        if "http" in path:
 | 
						|
            filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
 | 
						|
                                          progress=True)
 | 
						|
        else:
 | 
						|
            filename = path
 | 
						|
        if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
 | 
						|
            print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
 | 
						|
            return None
 | 
						|
 | 
						|
        model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
 | 
						|
        model.load_state_dict(torch.load(filename), strict=True)
 | 
						|
        model.eval()
 | 
						|
        for k, v in model.named_parameters():
 | 
						|
            v.requires_grad = False
 | 
						|
        model = model.to(device)
 | 
						|
 | 
						|
        return model
 | 
						|
 |