mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			97 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
from modules import devices
 | 
						|
 | 
						|
module_in_gpu = None
 | 
						|
cpu = torch.device("cpu")
 | 
						|
 | 
						|
 | 
						|
def send_everything_to_cpu():
 | 
						|
    global module_in_gpu
 | 
						|
 | 
						|
    if module_in_gpu is not None:
 | 
						|
        module_in_gpu.to(cpu)
 | 
						|
 | 
						|
    module_in_gpu = None
 | 
						|
 | 
						|
 | 
						|
def setup_for_low_vram(sd_model, use_medvram):
 | 
						|
    parents = {}
 | 
						|
 | 
						|
    def send_me_to_gpu(module, _):
 | 
						|
        """send this module to GPU; send whatever tracked module was previous in GPU to CPU;
 | 
						|
        we add this as forward_pre_hook to a lot of modules and this way all but one of them will
 | 
						|
        be in CPU
 | 
						|
        """
 | 
						|
        global module_in_gpu
 | 
						|
 | 
						|
        module = parents.get(module, module)
 | 
						|
 | 
						|
        if module_in_gpu == module:
 | 
						|
            return
 | 
						|
 | 
						|
        if module_in_gpu is not None:
 | 
						|
            module_in_gpu.to(cpu)
 | 
						|
 | 
						|
        module.to(devices.device)
 | 
						|
        module_in_gpu = module
 | 
						|
 | 
						|
    # see below for register_forward_pre_hook;
 | 
						|
    # first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is
 | 
						|
    # useless here, and we just replace those methods
 | 
						|
 | 
						|
    first_stage_model = sd_model.first_stage_model
 | 
						|
    first_stage_model_encode = sd_model.first_stage_model.encode
 | 
						|
    first_stage_model_decode = sd_model.first_stage_model.decode
 | 
						|
 | 
						|
    def first_stage_model_encode_wrap(x):
 | 
						|
        send_me_to_gpu(first_stage_model, None)
 | 
						|
        return first_stage_model_encode(x)
 | 
						|
 | 
						|
    def first_stage_model_decode_wrap(z):
 | 
						|
        send_me_to_gpu(first_stage_model, None)
 | 
						|
        return first_stage_model_decode(z)
 | 
						|
 | 
						|
    # for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field
 | 
						|
    if hasattr(sd_model.cond_stage_model, 'model'):
 | 
						|
        sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
 | 
						|
 | 
						|
    # remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
 | 
						|
    # send the model to GPU. Then put modules back. the modules will be in CPU.
 | 
						|
    stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
 | 
						|
    sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
 | 
						|
    sd_model.to(devices.device)
 | 
						|
    sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
 | 
						|
 | 
						|
    # register hooks for those the first three models
 | 
						|
    sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
 | 
						|
    sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
 | 
						|
    sd_model.first_stage_model.encode = first_stage_model_encode_wrap
 | 
						|
    sd_model.first_stage_model.decode = first_stage_model_decode_wrap
 | 
						|
    if sd_model.depth_model:
 | 
						|
        sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
 | 
						|
    parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
 | 
						|
 | 
						|
    if hasattr(sd_model.cond_stage_model, 'model'):
 | 
						|
        sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer
 | 
						|
        del sd_model.cond_stage_model.transformer
 | 
						|
 | 
						|
    if use_medvram:
 | 
						|
        sd_model.model.register_forward_pre_hook(send_me_to_gpu)
 | 
						|
    else:
 | 
						|
        diff_model = sd_model.model.diffusion_model
 | 
						|
 | 
						|
        # the third remaining model is still too big for 4 GB, so we also do the same for its submodules
 | 
						|
        # so that only one of them is in GPU at a time
 | 
						|
        stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
 | 
						|
        diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
 | 
						|
        sd_model.model.to(devices.device)
 | 
						|
        diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
 | 
						|
 | 
						|
        # install hooks for bits of third model
 | 
						|
        diff_model.time_embed.register_forward_pre_hook(send_me_to_gpu)
 | 
						|
        for block in diff_model.input_blocks:
 | 
						|
            block.register_forward_pre_hook(send_me_to_gpu)
 | 
						|
        diff_model.middle_block.register_forward_pre_hook(send_me_to_gpu)
 | 
						|
        for block in diff_model.output_blocks:
 | 
						|
            block.register_forward_pre_hook(send_me_to_gpu)
 |