mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			91 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import math
 | |
| from collections import namedtuple
 | |
| from copy import copy
 | |
| import random
 | |
| 
 | |
| import modules.scripts as scripts
 | |
| import gradio as gr
 | |
| 
 | |
| from modules import images
 | |
| from modules.processing import process_images, Processed
 | |
| from modules.shared import opts, cmd_opts, state
 | |
| import modules.sd_samplers
 | |
| 
 | |
| 
 | |
| def draw_xy_grid(xs, ys, x_label, y_label, cell):
 | |
|     res = []
 | |
| 
 | |
|     ver_texts = [[images.GridAnnotation(y_label(y))] for y in ys]
 | |
|     hor_texts = [[images.GridAnnotation(x_label(x))] for x in xs]
 | |
| 
 | |
|     first_processed = None
 | |
| 
 | |
|     state.job_count = len(xs) * len(ys)
 | |
| 
 | |
|     for iy, y in enumerate(ys):
 | |
|         for ix, x in enumerate(xs):
 | |
|             state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
 | |
| 
 | |
|             processed = cell(x, y)
 | |
|             if first_processed is None:
 | |
|                 first_processed = processed
 | |
| 
 | |
|             res.append(processed.images[0])
 | |
| 
 | |
|     grid = images.image_grid(res, rows=len(ys))
 | |
|     grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts)
 | |
| 
 | |
|     first_processed.images = [grid]
 | |
| 
 | |
|     return first_processed
 | |
| 
 | |
| 
 | |
| class Script(scripts.Script):
 | |
|     def title(self):
 | |
|         return "Prompt matrix"
 | |
| 
 | |
|     def ui(self, is_img2img):
 | |
|         put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False)
 | |
|         different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False)
 | |
| 
 | |
|         return [put_at_start, different_seeds]
 | |
| 
 | |
|     def run(self, p, put_at_start, different_seeds):
 | |
|         modules.processing.fix_seed(p)
 | |
| 
 | |
|         original_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt
 | |
| 
 | |
|         all_prompts = []
 | |
|         prompt_matrix_parts = original_prompt.split("|")
 | |
|         combination_count = 2 ** (len(prompt_matrix_parts) - 1)
 | |
|         for combination_num in range(combination_count):
 | |
|             selected_prompts = [text.strip().strip(',') for n, text in enumerate(prompt_matrix_parts[1:]) if combination_num & (1 << n)]
 | |
| 
 | |
|             if put_at_start:
 | |
|                 selected_prompts = selected_prompts + [prompt_matrix_parts[0]]
 | |
|             else:
 | |
|                 selected_prompts = [prompt_matrix_parts[0]] + selected_prompts
 | |
| 
 | |
|             all_prompts.append(", ".join(selected_prompts))
 | |
| 
 | |
|         p.n_iter = math.ceil(len(all_prompts) / p.batch_size)
 | |
|         p.do_not_save_grid = True
 | |
| 
 | |
|         print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.")
 | |
| 
 | |
|         p.prompt = all_prompts
 | |
|         p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))]
 | |
|         p.prompt_for_display = original_prompt
 | |
|         processed = process_images(p)
 | |
| 
 | |
|         grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
 | |
|         grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts)
 | |
|         processed.images.insert(0, grid)
 | |
|         processed.index_of_first_image = 1
 | |
|         processed.infotexts.insert(0, processed.infotexts[0])
 | |
| 
 | |
|         if opts.grid_save:
 | |
|             images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", extension=opts.grid_format, prompt=original_prompt, seed=processed.seed, grid=True, p=p)
 | |
| 
 | |
|         return processed
 | 
