mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			278 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py
 | |
| 
 | |
| import math
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch import nn, Tensor
 | |
| import torch.nn.functional as F
 | |
| from typing import Optional, List
 | |
| 
 | |
| from modules.codeformer.vqgan_arch import *
 | |
| from basicsr.utils import get_root_logger
 | |
| from basicsr.utils.registry import ARCH_REGISTRY
 | |
| 
 | |
| def calc_mean_std(feat, eps=1e-5):
 | |
|     """Calculate mean and std for adaptive_instance_normalization.
 | |
| 
 | |
|     Args:
 | |
|         feat (Tensor): 4D tensor.
 | |
|         eps (float): A small value added to the variance to avoid
 | |
|             divide-by-zero. Default: 1e-5.
 | |
|     """
 | |
|     size = feat.size()
 | |
|     assert len(size) == 4, 'The input feature should be 4D tensor.'
 | |
|     b, c = size[:2]
 | |
|     feat_var = feat.view(b, c, -1).var(dim=2) + eps
 | |
|     feat_std = feat_var.sqrt().view(b, c, 1, 1)
 | |
|     feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
 | |
|     return feat_mean, feat_std
 | |
| 
 | |
| 
 | |
| def adaptive_instance_normalization(content_feat, style_feat):
 | |
|     """Adaptive instance normalization.
 | |
| 
 | |
|     Adjust the reference features to have the similar color and illuminations
 | |
|     as those in the degradate features.
 | |
| 
 | |
|     Args:
 | |
|         content_feat (Tensor): The reference feature.
 | |
|         style_feat (Tensor): The degradate features.
 | |
|     """
 | |
|     size = content_feat.size()
 | |
|     style_mean, style_std = calc_mean_std(style_feat)
 | |
|     content_mean, content_std = calc_mean_std(content_feat)
 | |
|     normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
 | |
|     return normalized_feat * style_std.expand(size) + style_mean.expand(size)
 | |
| 
 | |
| 
 | |
| class PositionEmbeddingSine(nn.Module):
 | |
|     """
 | |
|     This is a more standard version of the position embedding, very similar to the one
 | |
|     used by the Attention is all you need paper, generalized to work on images.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
 | |
|         super().__init__()
 | |
|         self.num_pos_feats = num_pos_feats
 | |
|         self.temperature = temperature
 | |
|         self.normalize = normalize
 | |
|         if scale is not None and normalize is False:
 | |
|             raise ValueError("normalize should be True if scale is passed")
 | |
|         if scale is None:
 | |
|             scale = 2 * math.pi
 | |
|         self.scale = scale
 | |
| 
 | |
|     def forward(self, x, mask=None):
 | |
|         if mask is None:
 | |
|             mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
 | |
|         not_mask = ~mask
 | |
|         y_embed = not_mask.cumsum(1, dtype=torch.float32)
 | |
|         x_embed = not_mask.cumsum(2, dtype=torch.float32)
 | |
|         if self.normalize:
 | |
|             eps = 1e-6
 | |
|             y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
 | |
|             x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
 | |
| 
 | |
|         dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
 | |
|         dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
 | |
| 
 | |
|         pos_x = x_embed[:, :, :, None] / dim_t
 | |
|         pos_y = y_embed[:, :, :, None] / dim_t
 | |
|         pos_x = torch.stack(
 | |
|             (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
 | |
|         ).flatten(3)
 | |
|         pos_y = torch.stack(
 | |
|             (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
 | |
|         ).flatten(3)
 | |
|         pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
 | |
|         return pos
 | |
| 
 | |
| def _get_activation_fn(activation):
 | |
|     """Return an activation function given a string"""
 | |
|     if activation == "relu":
 | |
|         return F.relu
 | |
|     if activation == "gelu":
 | |
|         return F.gelu
 | |
|     if activation == "glu":
 | |
|         return F.glu
 | |
|     raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
 | |
| 
 | |
| 
 | |
| class TransformerSALayer(nn.Module):
 | |
|     def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
 | |
|         super().__init__()
 | |
|         self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
 | |
|         # Implementation of Feedforward model - MLP
 | |
|         self.linear1 = nn.Linear(embed_dim, dim_mlp)
 | |
|         self.dropout = nn.Dropout(dropout)
 | |
|         self.linear2 = nn.Linear(dim_mlp, embed_dim)
 | |
| 
 | |
|         self.norm1 = nn.LayerNorm(embed_dim)
 | |
|         self.norm2 = nn.LayerNorm(embed_dim)
 | |
|         self.dropout1 = nn.Dropout(dropout)
 | |
|         self.dropout2 = nn.Dropout(dropout)
 | |
| 
 | |
|         self.activation = _get_activation_fn(activation)
 | |
| 
 | |
|     def with_pos_embed(self, tensor, pos: Optional[Tensor]):
 | |
|         return tensor if pos is None else tensor + pos
 | |
| 
 | |
|     def forward(self, tgt,
 | |
|                 tgt_mask: Optional[Tensor] = None,
 | |
|                 tgt_key_padding_mask: Optional[Tensor] = None,
 | |
|                 query_pos: Optional[Tensor] = None):
 | |
|         
 | |
|         # self attention
 | |
|         tgt2 = self.norm1(tgt)
 | |
|         q = k = self.with_pos_embed(tgt2, query_pos)
 | |
|         tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
 | |
|                               key_padding_mask=tgt_key_padding_mask)[0]
 | |
|         tgt = tgt + self.dropout1(tgt2)
 | |
| 
 | |
|         # ffn
 | |
|         tgt2 = self.norm2(tgt)
 | |
|         tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
 | |
|         tgt = tgt + self.dropout2(tgt2)
 | |
|         return tgt
 | |
| 
 | |
| class Fuse_sft_block(nn.Module):
 | |
|     def __init__(self, in_ch, out_ch):
 | |
|         super().__init__()
 | |
|         self.encode_enc = ResBlock(2*in_ch, out_ch)
 | |
| 
 | |
|         self.scale = nn.Sequential(
 | |
|                     nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
 | |
|                     nn.LeakyReLU(0.2, True),
 | |
|                     nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
 | |
| 
 | |
|         self.shift = nn.Sequential(
 | |
|                     nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
 | |
|                     nn.LeakyReLU(0.2, True),
 | |
|                     nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
 | |
| 
 | |
|     def forward(self, enc_feat, dec_feat, w=1):
 | |
|         enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
 | |
|         scale = self.scale(enc_feat)
 | |
|         shift = self.shift(enc_feat)
 | |
|         residual = w * (dec_feat * scale + shift)
 | |
|         out = dec_feat + residual
 | |
|         return out
 | |
| 
 | |
| 
 | |
| @ARCH_REGISTRY.register()
 | |
| class CodeFormer(VQAutoEncoder):
 | |
|     def __init__(self, dim_embd=512, n_head=8, n_layers=9, 
 | |
|                 codebook_size=1024, latent_size=256,
 | |
|                 connect_list=['32', '64', '128', '256'],
 | |
|                 fix_modules=['quantize','generator']):
 | |
|         super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
 | |
| 
 | |
|         if fix_modules is not None:
 | |
|             for module in fix_modules:
 | |
|                 for param in getattr(self, module).parameters():
 | |
|                     param.requires_grad = False
 | |
| 
 | |
|         self.connect_list = connect_list
 | |
|         self.n_layers = n_layers
 | |
|         self.dim_embd = dim_embd
 | |
|         self.dim_mlp = dim_embd*2
 | |
| 
 | |
|         self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
 | |
|         self.feat_emb = nn.Linear(256, self.dim_embd)
 | |
| 
 | |
|         # transformer
 | |
|         self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) 
 | |
|                                     for _ in range(self.n_layers)])
 | |
| 
 | |
|         # logits_predict head
 | |
|         self.idx_pred_layer = nn.Sequential(
 | |
|             nn.LayerNorm(dim_embd),
 | |
|             nn.Linear(dim_embd, codebook_size, bias=False))
 | |
|         
 | |
|         self.channels = {
 | |
|             '16': 512,
 | |
|             '32': 256,
 | |
|             '64': 256,
 | |
|             '128': 128,
 | |
|             '256': 128,
 | |
|             '512': 64,
 | |
|         }
 | |
| 
 | |
|         # after second residual block for > 16, before attn layer for ==16
 | |
|         self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
 | |
|         # after first residual block for > 16, before attn layer for ==16
 | |
|         self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
 | |
| 
 | |
|         # fuse_convs_dict
 | |
|         self.fuse_convs_dict = nn.ModuleDict()
 | |
|         for f_size in self.connect_list:
 | |
|             in_ch = self.channels[f_size]
 | |
|             self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
 | |
| 
 | |
|     def _init_weights(self, module):
 | |
|         if isinstance(module, (nn.Linear, nn.Embedding)):
 | |
|             module.weight.data.normal_(mean=0.0, std=0.02)
 | |
|             if isinstance(module, nn.Linear) and module.bias is not None:
 | |
|                 module.bias.data.zero_()
 | |
|         elif isinstance(module, nn.LayerNorm):
 | |
|             module.bias.data.zero_()
 | |
|             module.weight.data.fill_(1.0)
 | |
| 
 | |
|     def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
 | |
|         # ################### Encoder #####################
 | |
|         enc_feat_dict = {}
 | |
|         out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
 | |
|         for i, block in enumerate(self.encoder.blocks):
 | |
|             x = block(x) 
 | |
|             if i in out_list:
 | |
|                 enc_feat_dict[str(x.shape[-1])] = x.clone()
 | |
| 
 | |
|         lq_feat = x
 | |
|         # ################# Transformer ###################
 | |
|         # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
 | |
|         pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
 | |
|         # BCHW -> BC(HW) -> (HW)BC
 | |
|         feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
 | |
|         query_emb = feat_emb
 | |
|         # Transformer encoder
 | |
|         for layer in self.ft_layers:
 | |
|             query_emb = layer(query_emb, query_pos=pos_emb)
 | |
| 
 | |
|         # output logits
 | |
|         logits = self.idx_pred_layer(query_emb) # (hw)bn
 | |
|         logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
 | |
| 
 | |
|         if code_only: # for training stage II
 | |
|           # logits doesn't need softmax before cross_entropy loss
 | |
|             return logits, lq_feat
 | |
| 
 | |
|         # ################# Quantization ###################
 | |
|         # if self.training:
 | |
|         #     quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
 | |
|         #     # b(hw)c -> bc(hw) -> bchw
 | |
|         #     quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
 | |
|         # ------------
 | |
|         soft_one_hot = F.softmax(logits, dim=2)
 | |
|         _, top_idx = torch.topk(soft_one_hot, 1, dim=2)
 | |
|         quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
 | |
|         # preserve gradients
 | |
|         # quant_feat = lq_feat + (quant_feat - lq_feat).detach()
 | |
| 
 | |
|         if detach_16:
 | |
|             quant_feat = quant_feat.detach() # for training stage III
 | |
|         if adain:
 | |
|             quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
 | |
| 
 | |
|         # ################## Generator ####################
 | |
|         x = quant_feat
 | |
|         fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
 | |
| 
 | |
|         for i, block in enumerate(self.generator.blocks):
 | |
|             x = block(x) 
 | |
|             if i in fuse_list: # fuse after i-th block
 | |
|                 f_size = str(x.shape[-1])
 | |
|                 if w>0:
 | |
|                     x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
 | |
|         out = x
 | |
|         # logits doesn't need softmax before cross_entropy loss
 | |
|         return out, logits, lq_feat | 
