mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			43 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			43 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import html
 | |
| 
 | |
| import gradio as gr
 | |
| 
 | |
| import modules.textual_inversion.textual_inversion
 | |
| import modules.textual_inversion.preprocess
 | |
| from modules import sd_hijack, shared
 | |
| 
 | |
| 
 | |
| def create_embedding(name, initialization_text, nvpt):
 | |
|     filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, init_text=initialization_text)
 | |
| 
 | |
|     sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
 | |
| 
 | |
|     return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
 | |
| 
 | |
| 
 | |
| def preprocess(*args):
 | |
|     modules.textual_inversion.preprocess.preprocess(*args)
 | |
| 
 | |
|     return "Preprocessing finished.", ""
 | |
| 
 | |
| 
 | |
| def train_embedding(*args):
 | |
| 
 | |
|     assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
 | |
| 
 | |
|     try:
 | |
|         sd_hijack.undo_optimizations()
 | |
| 
 | |
|         embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args)
 | |
| 
 | |
|         res = f"""
 | |
| Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps.
 | |
| Embedding saved to {html.escape(filename)}
 | |
| """
 | |
|         return res, ""
 | |
|     except Exception:
 | |
|         raise
 | |
|     finally:
 | |
|         sd_hijack.apply_optimizations()
 | |
| 
 | 
