mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			185 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from collections import namedtuple
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from tqdm import trange
 | 
						|
 | 
						|
import modules.scripts as scripts
 | 
						|
import gradio as gr
 | 
						|
 | 
						|
from modules import processing, shared, sd_samplers, prompt_parser
 | 
						|
from modules.processing import Processed
 | 
						|
from modules.sd_samplers import samplers
 | 
						|
from modules.shared import opts, cmd_opts, state
 | 
						|
 | 
						|
import torch
 | 
						|
import k_diffusion as K
 | 
						|
 | 
						|
from PIL import Image
 | 
						|
from torch import autocast
 | 
						|
from einops import rearrange, repeat
 | 
						|
 | 
						|
 | 
						|
def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
 | 
						|
    x = p.init_latent
 | 
						|
 | 
						|
    s_in = x.new_ones([x.shape[0]])
 | 
						|
    dnw = K.external.CompVisDenoiser(shared.sd_model)
 | 
						|
    sigmas = dnw.get_sigmas(steps).flip(0)
 | 
						|
 | 
						|
    shared.state.sampling_steps = steps
 | 
						|
 | 
						|
    for i in trange(1, len(sigmas)):
 | 
						|
        shared.state.sampling_step += 1
 | 
						|
 | 
						|
        x_in = torch.cat([x] * 2)
 | 
						|
        sigma_in = torch.cat([sigmas[i] * s_in] * 2)
 | 
						|
        cond_in = torch.cat([uncond, cond])
 | 
						|
 | 
						|
        c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
 | 
						|
        t = dnw.sigma_to_t(sigma_in)
 | 
						|
 | 
						|
        eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
 | 
						|
        denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
 | 
						|
 | 
						|
        denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
 | 
						|
 | 
						|
        d = (x - denoised) / sigmas[i]
 | 
						|
        dt = sigmas[i] - sigmas[i - 1]
 | 
						|
 | 
						|
        x = x + d * dt
 | 
						|
 | 
						|
        sd_samplers.store_latent(x)
 | 
						|
 | 
						|
        # This shouldn't be necessary, but solved some VRAM issues
 | 
						|
        del x_in, sigma_in, cond_in, c_out, c_in, t,
 | 
						|
        del eps, denoised_uncond, denoised_cond, denoised, d, dt
 | 
						|
 | 
						|
    shared.state.nextjob()
 | 
						|
 | 
						|
    return x / x.std()
 | 
						|
 | 
						|
 | 
						|
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])
 | 
						|
 | 
						|
 | 
						|
# Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
 | 
						|
def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
 | 
						|
    x = p.init_latent
 | 
						|
 | 
						|
    s_in = x.new_ones([x.shape[0]])
 | 
						|
    dnw = K.external.CompVisDenoiser(shared.sd_model)
 | 
						|
    sigmas = dnw.get_sigmas(steps).flip(0)
 | 
						|
 | 
						|
    shared.state.sampling_steps = steps
 | 
						|
 | 
						|
    for i in trange(1, len(sigmas)):
 | 
						|
        shared.state.sampling_step += 1
 | 
						|
 | 
						|
        x_in = torch.cat([x] * 2)
 | 
						|
        sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
 | 
						|
        cond_in = torch.cat([uncond, cond])
 | 
						|
 | 
						|
        c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
 | 
						|
 | 
						|
        if i == 1:
 | 
						|
            t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
 | 
						|
        else:
 | 
						|
            t = dnw.sigma_to_t(sigma_in)
 | 
						|
 | 
						|
        eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
 | 
						|
        denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
 | 
						|
 | 
						|
        denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
 | 
						|
 | 
						|
        if i == 1:
 | 
						|
            d = (x - denoised) / (2 * sigmas[i])
 | 
						|
        else:
 | 
						|
            d = (x - denoised) / sigmas[i - 1]
 | 
						|
 | 
						|
        dt = sigmas[i] - sigmas[i - 1]
 | 
						|
        x = x + d * dt
 | 
						|
 | 
						|
        sd_samplers.store_latent(x)
 | 
						|
 | 
						|
        # This shouldn't be necessary, but solved some VRAM issues
 | 
						|
        del x_in, sigma_in, cond_in, c_out, c_in, t,
 | 
						|
        del eps, denoised_uncond, denoised_cond, denoised, d, dt
 | 
						|
 | 
						|
    shared.state.nextjob()
 | 
						|
 | 
						|
    return x / sigmas[-1]
 | 
						|
 | 
						|
 | 
						|
class Script(scripts.Script):
 | 
						|
    def __init__(self):
 | 
						|
        self.cache = None
 | 
						|
 | 
						|
    def title(self):
 | 
						|
        return "img2img alternative test"
 | 
						|
 | 
						|
    def show(self, is_img2img):
 | 
						|
        return is_img2img
 | 
						|
 | 
						|
    def ui(self, is_img2img):
 | 
						|
        original_prompt = gr.Textbox(label="Original prompt", lines=1)
 | 
						|
        original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1)
 | 
						|
        cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
 | 
						|
        st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50)
 | 
						|
        randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
 | 
						|
        sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False)
 | 
						|
        return [original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment]
 | 
						|
 | 
						|
    def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment):
 | 
						|
        p.batch_size = 1
 | 
						|
        p.batch_count = 1
 | 
						|
 | 
						|
 | 
						|
        def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
 | 
						|
            lat = (p.init_latent.cpu().numpy() * 10).astype(int)
 | 
						|
 | 
						|
            same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
 | 
						|
                                and self.cache.original_prompt == original_prompt \
 | 
						|
                                and self.cache.original_negative_prompt == original_negative_prompt \
 | 
						|
                                and self.cache.sigma_adjustment == sigma_adjustment
 | 
						|
            same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
 | 
						|
 | 
						|
            if same_everything:
 | 
						|
                rec_noise = self.cache.noise
 | 
						|
            else:
 | 
						|
                shared.state.job_count += 1
 | 
						|
                cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
 | 
						|
                uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
 | 
						|
                if sigma_adjustment:
 | 
						|
                    rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
 | 
						|
                else:
 | 
						|
                    rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
 | 
						|
                self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
 | 
						|
 | 
						|
            rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
 | 
						|
            
 | 
						|
            combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
 | 
						|
            
 | 
						|
            sampler = samplers[p.sampler_index].constructor(p.sd_model)
 | 
						|
 | 
						|
            sigmas = sampler.model_wrap.get_sigmas(p.steps)
 | 
						|
            
 | 
						|
            noise_dt = combined_noise - (p.init_latent / sigmas[0])
 | 
						|
            
 | 
						|
            p.seed = p.seed + 1
 | 
						|
            
 | 
						|
            return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning)
 | 
						|
 | 
						|
        p.sample = sample_extra
 | 
						|
 | 
						|
        p.extra_generation_params["Decode prompt"] = original_prompt
 | 
						|
        p.extra_generation_params["Decode negative prompt"] = original_negative_prompt
 | 
						|
        p.extra_generation_params["Decode CFG scale"] = cfg
 | 
						|
        p.extra_generation_params["Decode steps"] = st
 | 
						|
        p.extra_generation_params["Randomness"] = randomness
 | 
						|
        p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment
 | 
						|
 | 
						|
        processed = processing.process_images(p)
 | 
						|
 | 
						|
        return processed
 | 
						|
 |