mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			210 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import math
 | 
						|
import sys
 | 
						|
import traceback
 | 
						|
 | 
						|
import torch
 | 
						|
from torch import einsum
 | 
						|
 | 
						|
from ldm.util import default
 | 
						|
from einops import rearrange
 | 
						|
 | 
						|
from modules import shared
 | 
						|
from modules.hypernetwork import hypernetwork
 | 
						|
 | 
						|
 | 
						|
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
 | 
						|
    try:
 | 
						|
        import xformers.ops
 | 
						|
        shared.xformers_available = True
 | 
						|
    except Exception:
 | 
						|
        print("Cannot import xformers", file=sys.stderr)
 | 
						|
        print(traceback.format_exc(), file=sys.stderr)
 | 
						|
 | 
						|
 | 
						|
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
 | 
						|
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
 | 
						|
    h = self.heads
 | 
						|
 | 
						|
    q_in = self.to_q(x)
 | 
						|
    context = default(context, x)
 | 
						|
 | 
						|
    context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
 | 
						|
    k_in = self.to_k(context_k)
 | 
						|
    v_in = self.to_v(context_v)
 | 
						|
    del context, context_k, context_v, x
 | 
						|
 | 
						|
    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
 | 
						|
    del q_in, k_in, v_in
 | 
						|
 | 
						|
    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
 | 
						|
    for i in range(0, q.shape[0], 2):
 | 
						|
        end = i + 2
 | 
						|
        s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
 | 
						|
        s1 *= self.scale
 | 
						|
 | 
						|
        s2 = s1.softmax(dim=-1)
 | 
						|
        del s1
 | 
						|
 | 
						|
        r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
 | 
						|
        del s2
 | 
						|
    del q, k, v
 | 
						|
 | 
						|
    r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
 | 
						|
    del r1
 | 
						|
 | 
						|
    return self.to_out(r2)
 | 
						|
 | 
						|
 | 
						|
# taken from https://github.com/Doggettx/stable-diffusion and modified
 | 
						|
def split_cross_attention_forward(self, x, context=None, mask=None):
 | 
						|
    h = self.heads
 | 
						|
 | 
						|
    q_in = self.to_q(x)
 | 
						|
    context = default(context, x)
 | 
						|
 | 
						|
    context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
 | 
						|
    k_in = self.to_k(context_k)
 | 
						|
    v_in = self.to_v(context_v)
 | 
						|
 | 
						|
    k_in *= self.scale
 | 
						|
 | 
						|
    del context, x
 | 
						|
 | 
						|
    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
 | 
						|
    del q_in, k_in, v_in
 | 
						|
 | 
						|
    r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
 | 
						|
 | 
						|
    stats = torch.cuda.memory_stats(q.device)
 | 
						|
    mem_active = stats['active_bytes.all.current']
 | 
						|
    mem_reserved = stats['reserved_bytes.all.current']
 | 
						|
    mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
 | 
						|
    mem_free_torch = mem_reserved - mem_active
 | 
						|
    mem_free_total = mem_free_cuda + mem_free_torch
 | 
						|
 | 
						|
    gb = 1024 ** 3
 | 
						|
    tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
 | 
						|
    modifier = 3 if q.element_size() == 2 else 2.5
 | 
						|
    mem_required = tensor_size * modifier
 | 
						|
    steps = 1
 | 
						|
 | 
						|
    if mem_required > mem_free_total:
 | 
						|
        steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
 | 
						|
        # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
 | 
						|
        #       f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
 | 
						|
 | 
						|
    if steps > 64:
 | 
						|
        max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
 | 
						|
        raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
 | 
						|
                           f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
 | 
						|
 | 
						|
    slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
 | 
						|
    for i in range(0, q.shape[1], slice_size):
 | 
						|
        end = i + slice_size
 | 
						|
        s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
 | 
						|
 | 
						|
        s2 = s1.softmax(dim=-1, dtype=q.dtype)
 | 
						|
        del s1
 | 
						|
 | 
						|
        r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
 | 
						|
        del s2
 | 
						|
 | 
						|
    del q, k, v
 | 
						|
 | 
						|
    r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
 | 
						|
    del r1
 | 
						|
 | 
						|
    return self.to_out(r2)
 | 
						|
 | 
						|
def xformers_attention_forward(self, x, context=None, mask=None):
 | 
						|
    h = self.heads
 | 
						|
    q_in = self.to_q(x)
 | 
						|
    context = default(context, x)
 | 
						|
 | 
						|
    context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
 | 
						|
    k_in = self.to_k(context_k)
 | 
						|
    v_in = self.to_v(context_v)
 | 
						|
 | 
						|
    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
 | 
						|
    del q_in, k_in, v_in
 | 
						|
    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
 | 
						|
 | 
						|
    out = rearrange(out, 'b n h d -> b n (h d)', h=h)
 | 
						|
    return self.to_out(out)
 | 
						|
 | 
						|
def cross_attention_attnblock_forward(self, x):
 | 
						|
        h_ = x
 | 
						|
        h_ = self.norm(h_)
 | 
						|
        q1 = self.q(h_)
 | 
						|
        k1 = self.k(h_)
 | 
						|
        v = self.v(h_)
 | 
						|
 | 
						|
        # compute attention
 | 
						|
        b, c, h, w = q1.shape
 | 
						|
 | 
						|
        q2 = q1.reshape(b, c, h*w)
 | 
						|
        del q1
 | 
						|
 | 
						|
        q = q2.permute(0, 2, 1)   # b,hw,c
 | 
						|
        del q2
 | 
						|
 | 
						|
        k = k1.reshape(b, c, h*w) # b,c,hw
 | 
						|
        del k1
 | 
						|
 | 
						|
        h_ = torch.zeros_like(k, device=q.device)
 | 
						|
 | 
						|
        stats = torch.cuda.memory_stats(q.device)
 | 
						|
        mem_active = stats['active_bytes.all.current']
 | 
						|
        mem_reserved = stats['reserved_bytes.all.current']
 | 
						|
        mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
 | 
						|
        mem_free_torch = mem_reserved - mem_active
 | 
						|
        mem_free_total = mem_free_cuda + mem_free_torch
 | 
						|
 | 
						|
        tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
 | 
						|
        mem_required = tensor_size * 2.5
 | 
						|
        steps = 1
 | 
						|
 | 
						|
        if mem_required > mem_free_total:
 | 
						|
            steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
 | 
						|
 | 
						|
        slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
 | 
						|
        for i in range(0, q.shape[1], slice_size):
 | 
						|
            end = i + slice_size
 | 
						|
 | 
						|
            w1 = torch.bmm(q[:, i:end], k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
 | 
						|
            w2 = w1 * (int(c)**(-0.5))
 | 
						|
            del w1
 | 
						|
            w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
 | 
						|
            del w2
 | 
						|
 | 
						|
            # attend to values
 | 
						|
            v1 = v.reshape(b, c, h*w)
 | 
						|
            w4 = w3.permute(0, 2, 1)   # b,hw,hw (first hw of k, second of q)
 | 
						|
            del w3
 | 
						|
 | 
						|
            h_[:, :, i:end] = torch.bmm(v1, w4)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
 | 
						|
            del v1, w4
 | 
						|
 | 
						|
        h2 = h_.reshape(b, c, h, w)
 | 
						|
        del h_
 | 
						|
 | 
						|
        h3 = self.proj_out(h2)
 | 
						|
        del h2
 | 
						|
 | 
						|
        h3 += x
 | 
						|
 | 
						|
        return h3
 | 
						|
    
 | 
						|
def xformers_attnblock_forward(self, x):
 | 
						|
    try:
 | 
						|
        h_ = x
 | 
						|
        h_ = self.norm(h_)
 | 
						|
        q1 = self.q(h_).contiguous()
 | 
						|
        k1 = self.k(h_).contiguous()
 | 
						|
        v = self.v(h_).contiguous()
 | 
						|
        out = xformers.ops.memory_efficient_attention(q1, k1, v)
 | 
						|
        out = self.proj_out(out)
 | 
						|
        return x + out
 | 
						|
    except NotImplementedError:
 | 
						|
        return cross_attention_attnblock_forward(self, x)
 |