mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			154 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import glob
 | 
						|
import os
 | 
						|
import shutil
 | 
						|
import importlib
 | 
						|
from urllib.parse import urlparse
 | 
						|
 | 
						|
from basicsr.utils.download_util import load_file_from_url
 | 
						|
from modules import shared
 | 
						|
from modules.upscaler import Upscaler
 | 
						|
from modules.paths import script_path, models_path
 | 
						|
 | 
						|
 | 
						|
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None) -> list:
 | 
						|
    """
 | 
						|
    A one-and done loader to try finding the desired models in specified directories.
 | 
						|
 | 
						|
    @param download_name: Specify to download from model_url immediately.
 | 
						|
    @param model_url: If no other models are found, this will be downloaded on upscale.
 | 
						|
    @param model_path: The location to store/find models in.
 | 
						|
    @param command_path: A command-line argument to search for models in first.
 | 
						|
    @param ext_filter: An optional list of filename extensions to filter by
 | 
						|
    @return: A list of paths containing the desired model(s)
 | 
						|
    """
 | 
						|
    output = []
 | 
						|
 | 
						|
    if ext_filter is None:
 | 
						|
        ext_filter = []
 | 
						|
 | 
						|
    try:
 | 
						|
        places = []
 | 
						|
 | 
						|
        if command_path is not None and command_path != model_path:
 | 
						|
            pretrained_path = os.path.join(command_path, 'experiments/pretrained_models')
 | 
						|
            if os.path.exists(pretrained_path):
 | 
						|
                print(f"Appending path: {pretrained_path}")
 | 
						|
                places.append(pretrained_path)
 | 
						|
            elif os.path.exists(command_path):
 | 
						|
                places.append(command_path)
 | 
						|
 | 
						|
        places.append(model_path)
 | 
						|
 | 
						|
        for place in places:
 | 
						|
            if os.path.exists(place):
 | 
						|
                for file in glob.iglob(place + '**/**', recursive=True):
 | 
						|
                    full_path = file
 | 
						|
                    if os.path.isdir(full_path):
 | 
						|
                        continue
 | 
						|
                    if len(ext_filter) != 0:
 | 
						|
                        model_name, extension = os.path.splitext(file)
 | 
						|
                        if extension not in ext_filter:
 | 
						|
                            continue
 | 
						|
                    if file not in output:
 | 
						|
                        output.append(full_path)
 | 
						|
 | 
						|
        if model_url is not None and len(output) == 0:
 | 
						|
            if download_name is not None:
 | 
						|
                dl = load_file_from_url(model_url, model_path, True, download_name)
 | 
						|
                output.append(dl)
 | 
						|
            else:
 | 
						|
                output.append(model_url)
 | 
						|
 | 
						|
    except Exception:
 | 
						|
        pass
 | 
						|
 | 
						|
    return output
 | 
						|
 | 
						|
 | 
						|
def friendly_name(file: str):
 | 
						|
    if "http" in file:
 | 
						|
        file = urlparse(file).path
 | 
						|
 | 
						|
    file = os.path.basename(file)
 | 
						|
    model_name, extension = os.path.splitext(file)
 | 
						|
    return model_name
 | 
						|
 | 
						|
 | 
						|
def cleanup_models():
 | 
						|
    # This code could probably be more efficient if we used a tuple list or something to store the src/destinations
 | 
						|
    # and then enumerate that, but this works for now. In the future, it'd be nice to just have every "model" scaler
 | 
						|
    # somehow auto-register and just do these things...
 | 
						|
    root_path = script_path
 | 
						|
    src_path = models_path
 | 
						|
    dest_path = os.path.join(models_path, "Stable-diffusion")
 | 
						|
    move_files(src_path, dest_path, ".ckpt")
 | 
						|
    src_path = os.path.join(root_path, "ESRGAN")
 | 
						|
    dest_path = os.path.join(models_path, "ESRGAN")
 | 
						|
    move_files(src_path, dest_path)
 | 
						|
    src_path = os.path.join(root_path, "gfpgan")
 | 
						|
    dest_path = os.path.join(models_path, "GFPGAN")
 | 
						|
    move_files(src_path, dest_path)
 | 
						|
    src_path = os.path.join(root_path, "SwinIR")
 | 
						|
    dest_path = os.path.join(models_path, "SwinIR")
 | 
						|
    move_files(src_path, dest_path)
 | 
						|
    src_path = os.path.join(root_path, "repositories/latent-diffusion/experiments/pretrained_models/")
 | 
						|
    dest_path = os.path.join(models_path, "LDSR")
 | 
						|
    move_files(src_path, dest_path)
 | 
						|
 | 
						|
 | 
						|
def move_files(src_path: str, dest_path: str, ext_filter: str = None):
 | 
						|
    try:
 | 
						|
        if not os.path.exists(dest_path):
 | 
						|
            os.makedirs(dest_path)
 | 
						|
        if os.path.exists(src_path):
 | 
						|
            for file in os.listdir(src_path):
 | 
						|
                fullpath = os.path.join(src_path, file)
 | 
						|
                if os.path.isfile(fullpath):
 | 
						|
                    if ext_filter is not None:
 | 
						|
                        if ext_filter not in file:
 | 
						|
                            continue
 | 
						|
                    print(f"Moving {file} from {src_path} to {dest_path}.")
 | 
						|
                    try:
 | 
						|
                        shutil.move(fullpath, dest_path)
 | 
						|
                    except:
 | 
						|
                        pass
 | 
						|
            if len(os.listdir(src_path)) == 0:
 | 
						|
                print(f"Removing empty folder: {src_path}")
 | 
						|
                shutil.rmtree(src_path, True)
 | 
						|
    except:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
def load_upscalers():
 | 
						|
    sd = shared.script_path
 | 
						|
    # We can only do this 'magic' method to dynamically load upscalers if they are referenced,
 | 
						|
    # so we'll try to import any _model.py files before looking in __subclasses__
 | 
						|
    modules_dir = os.path.join(sd, "modules")
 | 
						|
    for file in os.listdir(modules_dir):
 | 
						|
        if "_model.py" in file:
 | 
						|
            model_name = file.replace("_model.py", "")
 | 
						|
            full_model = f"modules.{model_name}_model"
 | 
						|
            try:
 | 
						|
                importlib.import_module(full_model)
 | 
						|
            except:
 | 
						|
                pass
 | 
						|
    datas = []
 | 
						|
    c_o = vars(shared.cmd_opts)
 | 
						|
    for cls in Upscaler.__subclasses__():
 | 
						|
        name = cls.__name__
 | 
						|
        module_name = cls.__module__
 | 
						|
        module = importlib.import_module(module_name)
 | 
						|
        class_ = getattr(module, name)
 | 
						|
        cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
 | 
						|
        opt_string = None
 | 
						|
        try:
 | 
						|
            if cmd_name in c_o:
 | 
						|
                opt_string = c_o[cmd_name]
 | 
						|
        except:
 | 
						|
            pass
 | 
						|
        scaler = class_(opt_string)
 | 
						|
        for child in scaler.scalers:
 | 
						|
            datas.append(child)
 | 
						|
 | 
						|
    shared.sd_upscalers = datas
 |