mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			466 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			466 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # this file is adapted from https://github.com/victorca25/iNNfer
 | |
| 
 | |
| from collections import OrderedDict
 | |
| import math
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| import torch.nn.functional as F
 | |
| 
 | |
| 
 | |
| ####################
 | |
| # RRDBNet Generator
 | |
| ####################
 | |
| 
 | |
| class RRDBNet(nn.Module):
 | |
|     def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None,
 | |
|             act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D',
 | |
|             finalact=None, gaussian_noise=False, plus=False):
 | |
|         super(RRDBNet, self).__init__()
 | |
|         n_upscale = int(math.log(upscale, 2))
 | |
|         if upscale == 3:
 | |
|             n_upscale = 1
 | |
| 
 | |
|         self.resrgan_scale = 0
 | |
|         if in_nc % 16 == 0:
 | |
|             self.resrgan_scale = 1
 | |
|         elif in_nc != 4 and in_nc % 4 == 0:
 | |
|             self.resrgan_scale = 2
 | |
| 
 | |
|         fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
 | |
|         rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
 | |
|             norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype,
 | |
|             gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)]
 | |
|         LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype)
 | |
| 
 | |
|         if upsample_mode == 'upconv':
 | |
|             upsample_block = upconv_block
 | |
|         elif upsample_mode == 'pixelshuffle':
 | |
|             upsample_block = pixelshuffle_block
 | |
|         else:
 | |
|             raise NotImplementedError(f'upsample mode [{upsample_mode}] is not found')
 | |
|         if upscale == 3:
 | |
|             upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
 | |
|         else:
 | |
|             upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
 | |
|         HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
 | |
|         HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
 | |
| 
 | |
|         outact = act(finalact) if finalact else None
 | |
| 
 | |
|         self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)),
 | |
|             *upsampler, HR_conv0, HR_conv1, outact)
 | |
| 
 | |
|     def forward(self, x, outm=None):
 | |
|         if self.resrgan_scale == 1:
 | |
|             feat = pixel_unshuffle(x, scale=4)
 | |
|         elif self.resrgan_scale == 2:
 | |
|             feat = pixel_unshuffle(x, scale=2)
 | |
|         else:
 | |
|             feat = x
 | |
| 
 | |
|         return self.model(feat)
 | |
| 
 | |
| 
 | |
| class RRDB(nn.Module):
 | |
|     """
 | |
|     Residual in Residual Dense Block
 | |
|     (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
 | |
|     """
 | |
| 
 | |
|     def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
 | |
|             norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
 | |
|             spectral_norm=False, gaussian_noise=False, plus=False):
 | |
|         super(RRDB, self).__init__()
 | |
|         # This is for backwards compatibility with existing models
 | |
|         if nr == 3:
 | |
|             self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
 | |
|                     norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
 | |
|                     gaussian_noise=gaussian_noise, plus=plus)
 | |
|             self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
 | |
|                     norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
 | |
|                     gaussian_noise=gaussian_noise, plus=plus)
 | |
|             self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
 | |
|                     norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
 | |
|                     gaussian_noise=gaussian_noise, plus=plus)
 | |
|         else:
 | |
|             RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
 | |
|                                               norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
 | |
|                                               gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)]
 | |
|             self.RDBs = nn.Sequential(*RDB_list)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         if hasattr(self, 'RDB1'):
 | |
|             out = self.RDB1(x)
 | |
|             out = self.RDB2(out)
 | |
|             out = self.RDB3(out)
 | |
|         else:
 | |
|             out = self.RDBs(x)
 | |
|         return out * 0.2 + x
 | |
| 
 | |
| 
 | |
| class ResidualDenseBlock_5C(nn.Module):
 | |
|     """
 | |
|     Residual Dense Block
 | |
|     The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
 | |
|     Modified options that can be used:
 | |
|         - "Partial Convolution based Padding" arXiv:1811.11718
 | |
|         - "Spectral normalization" arXiv:1802.05957
 | |
|         - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
 | |
|             {Rakotonirina} and A. {Rasoanaivo}
 | |
|     """
 | |
| 
 | |
|     def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
 | |
|             norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
 | |
|             spectral_norm=False, gaussian_noise=False, plus=False):
 | |
|         super(ResidualDenseBlock_5C, self).__init__()
 | |
| 
 | |
|         self.noise = GaussianNoise() if gaussian_noise else None
 | |
|         self.conv1x1 = conv1x1(nf, gc) if plus else None
 | |
| 
 | |
|         self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
 | |
|             norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
 | |
|             spectral_norm=spectral_norm)
 | |
|         self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
 | |
|             norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
 | |
|             spectral_norm=spectral_norm)
 | |
|         self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
 | |
|             norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
 | |
|             spectral_norm=spectral_norm)
 | |
|         self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
 | |
|             norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
 | |
|             spectral_norm=spectral_norm)
 | |
|         if mode == 'CNA':
 | |
|             last_act = None
 | |
|         else:
 | |
|             last_act = act_type
 | |
|         self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type,
 | |
|             norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype,
 | |
|             spectral_norm=spectral_norm)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x1 = self.conv1(x)
 | |
|         x2 = self.conv2(torch.cat((x, x1), 1))
 | |
|         if self.conv1x1:
 | |
|             x2 = x2 + self.conv1x1(x)
 | |
|         x3 = self.conv3(torch.cat((x, x1, x2), 1))
 | |
|         x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
 | |
|         if self.conv1x1:
 | |
|             x4 = x4 + x2
 | |
|         x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
 | |
|         if self.noise:
 | |
|             return self.noise(x5.mul(0.2) + x)
 | |
|         else:
 | |
|             return x5 * 0.2 + x
 | |
| 
 | |
| 
 | |
| ####################
 | |
| # ESRGANplus
 | |
| ####################
 | |
| 
 | |
| class GaussianNoise(nn.Module):
 | |
|     def __init__(self, sigma=0.1, is_relative_detach=False):
 | |
|         super().__init__()
 | |
|         self.sigma = sigma
 | |
|         self.is_relative_detach = is_relative_detach
 | |
|         self.noise = torch.tensor(0, dtype=torch.float)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         if self.training and self.sigma != 0:
 | |
|             self.noise = self.noise.to(x.device)
 | |
|             scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
 | |
|             sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
 | |
|             x = x + sampled_noise
 | |
|         return x
 | |
| 
 | |
| def conv1x1(in_planes, out_planes, stride=1):
 | |
|     return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
 | |
| 
 | |
| 
 | |
| ####################
 | |
| # SRVGGNetCompact
 | |
| ####################
 | |
| 
 | |
| class SRVGGNetCompact(nn.Module):
 | |
|     """A compact VGG-style network structure for super-resolution.
 | |
|     This class is copied from https://github.com/xinntao/Real-ESRGAN
 | |
|     """
 | |
| 
 | |
|     def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
 | |
|         super(SRVGGNetCompact, self).__init__()
 | |
|         self.num_in_ch = num_in_ch
 | |
|         self.num_out_ch = num_out_ch
 | |
|         self.num_feat = num_feat
 | |
|         self.num_conv = num_conv
 | |
|         self.upscale = upscale
 | |
|         self.act_type = act_type
 | |
| 
 | |
|         self.body = nn.ModuleList()
 | |
|         # the first conv
 | |
|         self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
 | |
|         # the first activation
 | |
|         if act_type == 'relu':
 | |
|             activation = nn.ReLU(inplace=True)
 | |
|         elif act_type == 'prelu':
 | |
|             activation = nn.PReLU(num_parameters=num_feat)
 | |
|         elif act_type == 'leakyrelu':
 | |
|             activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
 | |
|         self.body.append(activation)
 | |
| 
 | |
|         # the body structure
 | |
|         for _ in range(num_conv):
 | |
|             self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
 | |
|             # activation
 | |
|             if act_type == 'relu':
 | |
|                 activation = nn.ReLU(inplace=True)
 | |
|             elif act_type == 'prelu':
 | |
|                 activation = nn.PReLU(num_parameters=num_feat)
 | |
|             elif act_type == 'leakyrelu':
 | |
|                 activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
 | |
|             self.body.append(activation)
 | |
| 
 | |
|         # the last conv
 | |
|         self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
 | |
|         # upsample
 | |
|         self.upsampler = nn.PixelShuffle(upscale)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         out = x
 | |
|         for i in range(0, len(self.body)):
 | |
|             out = self.body[i](out)
 | |
| 
 | |
|         out = self.upsampler(out)
 | |
|         # add the nearest upsampled image, so that the network learns the residual
 | |
|         base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
 | |
|         out += base
 | |
|         return out
 | |
| 
 | |
| 
 | |
| ####################
 | |
| # Upsampler
 | |
| ####################
 | |
| 
 | |
| class Upsample(nn.Module):
 | |
|     r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
 | |
|     The input data is assumed to be of the form
 | |
|     `minibatch x channels x [optional depth] x [optional height] x width`.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
 | |
|         super(Upsample, self).__init__()
 | |
|         if isinstance(scale_factor, tuple):
 | |
|             self.scale_factor = tuple(float(factor) for factor in scale_factor)
 | |
|         else:
 | |
|             self.scale_factor = float(scale_factor) if scale_factor else None
 | |
|         self.mode = mode
 | |
|         self.size = size
 | |
|         self.align_corners = align_corners
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)
 | |
| 
 | |
|     def extra_repr(self):
 | |
|         if self.scale_factor is not None:
 | |
|             info = f'scale_factor={self.scale_factor}'
 | |
|         else:
 | |
|             info = f'size={self.size}'
 | |
|         info += f', mode={self.mode}'
 | |
|         return info
 | |
| 
 | |
| 
 | |
| def pixel_unshuffle(x, scale):
 | |
|     """ Pixel unshuffle.
 | |
|     Args:
 | |
|         x (Tensor): Input feature with shape (b, c, hh, hw).
 | |
|         scale (int): Downsample ratio.
 | |
|     Returns:
 | |
|         Tensor: the pixel unshuffled feature.
 | |
|     """
 | |
|     b, c, hh, hw = x.size()
 | |
|     out_channel = c * (scale**2)
 | |
|     assert hh % scale == 0 and hw % scale == 0
 | |
|     h = hh // scale
 | |
|     w = hw // scale
 | |
|     x_view = x.view(b, c, h, scale, w, scale)
 | |
|     return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
 | |
| 
 | |
| 
 | |
| def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
 | |
|                         pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'):
 | |
|     """
 | |
|     Pixel shuffle layer
 | |
|     (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
 | |
|     Neural Network, CVPR17)
 | |
|     """
 | |
|     conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
 | |
|                         pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype)
 | |
|     pixel_shuffle = nn.PixelShuffle(upscale_factor)
 | |
| 
 | |
|     n = norm(norm_type, out_nc) if norm_type else None
 | |
|     a = act(act_type) if act_type else None
 | |
|     return sequential(conv, pixel_shuffle, n, a)
 | |
| 
 | |
| 
 | |
| def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
 | |
|                 pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'):
 | |
|     """ Upconv layer """
 | |
|     upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor
 | |
|     upsample = Upsample(scale_factor=upscale_factor, mode=mode)
 | |
|     conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
 | |
|                         pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype)
 | |
|     return sequential(upsample, conv)
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| ####################
 | |
| # Basic blocks
 | |
| ####################
 | |
| 
 | |
| 
 | |
| def make_layer(basic_block, num_basic_block, **kwarg):
 | |
|     """Make layers by stacking the same blocks.
 | |
|     Args:
 | |
|         basic_block (nn.module): nn.module class for basic block. (block)
 | |
|         num_basic_block (int): number of blocks. (n_layers)
 | |
|     Returns:
 | |
|         nn.Sequential: Stacked blocks in nn.Sequential.
 | |
|     """
 | |
|     layers = []
 | |
|     for _ in range(num_basic_block):
 | |
|         layers.append(basic_block(**kwarg))
 | |
|     return nn.Sequential(*layers)
 | |
| 
 | |
| 
 | |
| def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
 | |
|     """ activation helper """
 | |
|     act_type = act_type.lower()
 | |
|     if act_type == 'relu':
 | |
|         layer = nn.ReLU(inplace)
 | |
|     elif act_type in ('leakyrelu', 'lrelu'):
 | |
|         layer = nn.LeakyReLU(neg_slope, inplace)
 | |
|     elif act_type == 'prelu':
 | |
|         layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
 | |
|     elif act_type == 'tanh':  # [-1, 1] range output
 | |
|         layer = nn.Tanh()
 | |
|     elif act_type == 'sigmoid':  # [0, 1] range output
 | |
|         layer = nn.Sigmoid()
 | |
|     else:
 | |
|         raise NotImplementedError(f'activation layer [{act_type}] is not found')
 | |
|     return layer
 | |
| 
 | |
| 
 | |
| class Identity(nn.Module):
 | |
|     def __init__(self, *kwargs):
 | |
|         super(Identity, self).__init__()
 | |
| 
 | |
|     def forward(self, x, *kwargs):
 | |
|         return x
 | |
| 
 | |
| 
 | |
| def norm(norm_type, nc):
 | |
|     """ Return a normalization layer """
 | |
|     norm_type = norm_type.lower()
 | |
|     if norm_type == 'batch':
 | |
|         layer = nn.BatchNorm2d(nc, affine=True)
 | |
|     elif norm_type == 'instance':
 | |
|         layer = nn.InstanceNorm2d(nc, affine=False)
 | |
|     elif norm_type == 'none':
 | |
|         def norm_layer(x): return Identity()
 | |
|     else:
 | |
|         raise NotImplementedError(f'normalization layer [{norm_type}] is not found')
 | |
|     return layer
 | |
| 
 | |
| 
 | |
| def pad(pad_type, padding):
 | |
|     """ padding layer helper """
 | |
|     pad_type = pad_type.lower()
 | |
|     if padding == 0:
 | |
|         return None
 | |
|     if pad_type == 'reflect':
 | |
|         layer = nn.ReflectionPad2d(padding)
 | |
|     elif pad_type == 'replicate':
 | |
|         layer = nn.ReplicationPad2d(padding)
 | |
|     elif pad_type == 'zero':
 | |
|         layer = nn.ZeroPad2d(padding)
 | |
|     else:
 | |
|         raise NotImplementedError(f'padding layer [{pad_type}] is not implemented')
 | |
|     return layer
 | |
| 
 | |
| 
 | |
| def get_valid_padding(kernel_size, dilation):
 | |
|     kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
 | |
|     padding = (kernel_size - 1) // 2
 | |
|     return padding
 | |
| 
 | |
| 
 | |
| class ShortcutBlock(nn.Module):
 | |
|     """ Elementwise sum the output of a submodule to its input """
 | |
|     def __init__(self, submodule):
 | |
|         super(ShortcutBlock, self).__init__()
 | |
|         self.sub = submodule
 | |
| 
 | |
|     def forward(self, x):
 | |
|         output = x + self.sub(x)
 | |
|         return output
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|')
 | |
| 
 | |
| 
 | |
| def sequential(*args):
 | |
|     """ Flatten Sequential. It unwraps nn.Sequential. """
 | |
|     if len(args) == 1:
 | |
|         if isinstance(args[0], OrderedDict):
 | |
|             raise NotImplementedError('sequential does not support OrderedDict input.')
 | |
|         return args[0]  # No sequential is needed.
 | |
|     modules = []
 | |
|     for module in args:
 | |
|         if isinstance(module, nn.Sequential):
 | |
|             for submodule in module.children():
 | |
|                 modules.append(submodule)
 | |
|         elif isinstance(module, nn.Module):
 | |
|             modules.append(module)
 | |
|     return nn.Sequential(*modules)
 | |
| 
 | |
| 
 | |
| def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
 | |
|                pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D',
 | |
|                spectral_norm=False):
 | |
|     """ Conv layer with padding, normalization, activation """
 | |
|     assert mode in ['CNA', 'NAC', 'CNAC'], f'Wrong conv mode [{mode}]'
 | |
|     padding = get_valid_padding(kernel_size, dilation)
 | |
|     p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
 | |
|     padding = padding if pad_type == 'zero' else 0
 | |
| 
 | |
|     if convtype=='PartialConv2D':
 | |
|         from torchvision.ops import PartialConv2d  # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer
 | |
|         c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
 | |
|                dilation=dilation, bias=bias, groups=groups)
 | |
|     elif convtype=='DeformConv2D':
 | |
|         from torchvision.ops import DeformConv2d  # not tested
 | |
|         c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
 | |
|                dilation=dilation, bias=bias, groups=groups)
 | |
|     elif convtype=='Conv3D':
 | |
|         c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
 | |
|                 dilation=dilation, bias=bias, groups=groups)
 | |
|     else:
 | |
|         c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
 | |
|                 dilation=dilation, bias=bias, groups=groups)
 | |
| 
 | |
|     if spectral_norm:
 | |
|         c = nn.utils.spectral_norm(c)
 | |
| 
 | |
|     a = act(act_type) if act_type else None
 | |
|     if 'CNA' in mode:
 | |
|         n = norm(norm_type, out_nc) if norm_type else None
 | |
|         return sequential(p, c, n, a)
 | |
|     elif mode == 'NAC':
 | |
|         if norm_type is None and act_type is not None:
 | |
|             a = act(act_type, inplace=False)
 | |
|         n = norm(norm_type, in_nc) if norm_type else None
 | |
|         return sequential(n, a, p, c)
 | 
