mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			305 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			305 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import re
 | |
| import shutil
 | |
| import json
 | |
| 
 | |
| 
 | |
| import torch
 | |
| import tqdm
 | |
| 
 | |
| from modules import shared, images, sd_models, sd_vae, sd_models_config
 | |
| from modules.ui_common import plaintext_to_html
 | |
| import gradio as gr
 | |
| import safetensors.torch
 | |
| 
 | |
| 
 | |
| def run_pnginfo(image):
 | |
|     if image is None:
 | |
|         return '', '', ''
 | |
| 
 | |
|     geninfo, items = images.read_info_from_image(image)
 | |
|     items = {**{'parameters': geninfo}, **items}
 | |
| 
 | |
|     info = ''
 | |
|     for key, text in items.items():
 | |
|         info += f"""
 | |
| <div>
 | |
| <p><b>{plaintext_to_html(str(key))}</b></p>
 | |
| <p>{plaintext_to_html(str(text))}</p>
 | |
| </div>
 | |
| """.strip()+"\n"
 | |
| 
 | |
|     if len(info) == 0:
 | |
|         message = "Nothing found in the image."
 | |
|         info = f"<div><p>{message}<p></div>"
 | |
| 
 | |
|     return '', geninfo, info
 | |
| 
 | |
| 
 | |
| def create_config(ckpt_result, config_source, a, b, c):
 | |
|     def config(x):
 | |
|         res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None
 | |
|         return res if res != shared.sd_default_config else None
 | |
| 
 | |
|     if config_source == 0:
 | |
|         cfg = config(a) or config(b) or config(c)
 | |
|     elif config_source == 1:
 | |
|         cfg = config(b)
 | |
|     elif config_source == 2:
 | |
|         cfg = config(c)
 | |
|     else:
 | |
|         cfg = None
 | |
| 
 | |
|     if cfg is None:
 | |
|         return
 | |
| 
 | |
|     filename, _ = os.path.splitext(ckpt_result)
 | |
|     checkpoint_filename = filename + ".yaml"
 | |
| 
 | |
|     print("Copying config:")
 | |
|     print("   from:", cfg)
 | |
|     print("     to:", checkpoint_filename)
 | |
|     shutil.copyfile(cfg, checkpoint_filename)
 | |
| 
 | |
| 
 | |
| checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
 | |
| 
 | |
| 
 | |
| def to_half(tensor, enable):
 | |
|     if enable and tensor.dtype == torch.float:
 | |
|         return tensor.half()
 | |
| 
 | |
|     return tensor
 | |
| 
 | |
| 
 | |
| def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
 | |
|     shared.state.begin()
 | |
|     shared.state.job = 'model-merge'
 | |
| 
 | |
|     def fail(message):
 | |
|         shared.state.textinfo = message
 | |
|         shared.state.end()
 | |
|         return [*[gr.update() for _ in range(4)], message]
 | |
| 
 | |
|     def weighted_sum(theta0, theta1, alpha):
 | |
|         return ((1 - alpha) * theta0) + (alpha * theta1)
 | |
| 
 | |
|     def get_difference(theta1, theta2):
 | |
|         return theta1 - theta2
 | |
| 
 | |
|     def add_difference(theta0, theta1_2_diff, alpha):
 | |
|         return theta0 + (alpha * theta1_2_diff)
 | |
| 
 | |
|     def filename_weighted_sum():
 | |
|         a = primary_model_info.model_name
 | |
|         b = secondary_model_info.model_name
 | |
|         Ma = round(1 - multiplier, 2)
 | |
|         Mb = round(multiplier, 2)
 | |
| 
 | |
|         return f"{Ma}({a}) + {Mb}({b})"
 | |
| 
 | |
|     def filename_add_difference():
 | |
|         a = primary_model_info.model_name
 | |
|         b = secondary_model_info.model_name
 | |
|         c = tertiary_model_info.model_name
 | |
|         M = round(multiplier, 2)
 | |
| 
 | |
|         return f"{a} + {M}({b} - {c})"
 | |
| 
 | |
|     def filename_nothing():
 | |
|         return primary_model_info.model_name
 | |
| 
 | |
|     theta_funcs = {
 | |
|         "Weighted sum": (filename_weighted_sum, None, weighted_sum),
 | |
|         "Add difference": (filename_add_difference, get_difference, add_difference),
 | |
|         "No interpolation": (filename_nothing, None, None),
 | |
|     }
 | |
|     filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method]
 | |
|     shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0)
 | |
| 
 | |
|     if not primary_model_name:
 | |
|         return fail("Failed: Merging requires a primary model.")
 | |
| 
 | |
|     primary_model_info = sd_models.checkpoints_list[primary_model_name]
 | |
| 
 | |
|     if theta_func2 and not secondary_model_name:
 | |
|         return fail("Failed: Merging requires a secondary model.")
 | |
| 
 | |
|     secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None
 | |
| 
 | |
|     if theta_func1 and not tertiary_model_name:
 | |
|         return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.")
 | |
| 
 | |
|     tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None
 | |
| 
 | |
|     result_is_inpainting_model = False
 | |
|     result_is_instruct_pix2pix_model = False
 | |
| 
 | |
|     if theta_func2:
 | |
|         shared.state.textinfo = "Loading B"
 | |
|         print(f"Loading {secondary_model_info.filename}...")
 | |
|         theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
 | |
|     else:
 | |
|         theta_1 = None
 | |
| 
 | |
|     if theta_func1:
 | |
|         shared.state.textinfo = "Loading C"
 | |
|         print(f"Loading {tertiary_model_info.filename}...")
 | |
|         theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
 | |
| 
 | |
|         shared.state.textinfo = 'Merging B and C'
 | |
|         shared.state.sampling_steps = len(theta_1.keys())
 | |
|         for key in tqdm.tqdm(theta_1.keys()):
 | |
|             if key in checkpoint_dict_skip_on_merge:
 | |
|                 continue
 | |
| 
 | |
|             if 'model' in key:
 | |
|                 if key in theta_2:
 | |
|                     t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
 | |
|                     theta_1[key] = theta_func1(theta_1[key], t2)
 | |
|                 else:
 | |
|                     theta_1[key] = torch.zeros_like(theta_1[key])
 | |
| 
 | |
|             shared.state.sampling_step += 1
 | |
|         del theta_2
 | |
| 
 | |
|         shared.state.nextjob()
 | |
| 
 | |
|     shared.state.textinfo = f"Loading {primary_model_info.filename}..."
 | |
|     print(f"Loading {primary_model_info.filename}...")
 | |
|     theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
 | |
| 
 | |
|     print("Merging...")
 | |
|     shared.state.textinfo = 'Merging A and B'
 | |
|     shared.state.sampling_steps = len(theta_0.keys())
 | |
|     for key in tqdm.tqdm(theta_0.keys()):
 | |
|         if theta_1 and 'model' in key and key in theta_1:
 | |
| 
 | |
|             if key in checkpoint_dict_skip_on_merge:
 | |
|                 continue
 | |
| 
 | |
|             a = theta_0[key]
 | |
|             b = theta_1[key]
 | |
| 
 | |
|             # this enables merging an inpainting model (A) with another one (B);
 | |
|             # where normal model would have 4 channels, for latenst space, inpainting model would
 | |
|             # have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
 | |
|             if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
 | |
|                 if a.shape[1] == 4 and b.shape[1] == 9:
 | |
|                     raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
 | |
|                 if a.shape[1] == 4 and b.shape[1] == 8:
 | |
|                     raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.")
 | |
| 
 | |
|                 if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model...
 | |
|                     theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common.  Otherwise we get an error due to dimension mismatch.
 | |
|                     result_is_instruct_pix2pix_model = True
 | |
|                 else:
 | |
|                     assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
 | |
|                     theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
 | |
|                     result_is_inpainting_model = True
 | |
|             else:
 | |
|                 theta_0[key] = theta_func2(a, b, multiplier)
 | |
| 
 | |
|             theta_0[key] = to_half(theta_0[key], save_as_half)
 | |
| 
 | |
|         shared.state.sampling_step += 1
 | |
| 
 | |
|     del theta_1
 | |
| 
 | |
|     bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
 | |
|     if bake_in_vae_filename is not None:
 | |
|         print(f"Baking in VAE from {bake_in_vae_filename}")
 | |
|         shared.state.textinfo = 'Baking in VAE'
 | |
|         vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')
 | |
| 
 | |
|         for key in vae_dict.keys():
 | |
|             theta_0_key = 'first_stage_model.' + key
 | |
|             if theta_0_key in theta_0:
 | |
|                 theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half)
 | |
| 
 | |
|         del vae_dict
 | |
| 
 | |
|     if save_as_half and not theta_func2:
 | |
|         for key in theta_0.keys():
 | |
|             theta_0[key] = to_half(theta_0[key], save_as_half)
 | |
| 
 | |
|     if discard_weights:
 | |
|         regex = re.compile(discard_weights)
 | |
|         for key in list(theta_0):
 | |
|             if re.search(regex, key):
 | |
|                 theta_0.pop(key, None)
 | |
| 
 | |
|     ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
 | |
| 
 | |
|     filename = filename_generator() if custom_name == '' else custom_name
 | |
|     filename += ".inpainting" if result_is_inpainting_model else ""
 | |
|     filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else ""
 | |
|     filename += "." + checkpoint_format
 | |
| 
 | |
|     output_modelname = os.path.join(ckpt_dir, filename)
 | |
| 
 | |
|     shared.state.nextjob()
 | |
|     shared.state.textinfo = "Saving"
 | |
|     print(f"Saving to {output_modelname}...")
 | |
| 
 | |
|     metadata = None
 | |
| 
 | |
|     if save_metadata:
 | |
|         metadata = {"format": "pt"}
 | |
| 
 | |
|         merge_recipe = {
 | |
|             "type": "webui", # indicate this model was merged with webui's built-in merger
 | |
|             "primary_model_hash": primary_model_info.sha256,
 | |
|             "secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None,
 | |
|             "tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None,
 | |
|             "interp_method": interp_method,
 | |
|             "multiplier": multiplier,
 | |
|             "save_as_half": save_as_half,
 | |
|             "custom_name": custom_name,
 | |
|             "config_source": config_source,
 | |
|             "bake_in_vae": bake_in_vae,
 | |
|             "discard_weights": discard_weights,
 | |
|             "is_inpainting": result_is_inpainting_model,
 | |
|             "is_instruct_pix2pix": result_is_instruct_pix2pix_model
 | |
|         }
 | |
|         metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
 | |
| 
 | |
|         sd_merge_models = {}
 | |
| 
 | |
|         def add_model_metadata(checkpoint_info):
 | |
|             checkpoint_info.calculate_shorthash()
 | |
|             sd_merge_models[checkpoint_info.sha256] = {
 | |
|                 "name": checkpoint_info.name,
 | |
|                 "legacy_hash": checkpoint_info.hash,
 | |
|                 "sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None)
 | |
|             }
 | |
| 
 | |
|             sd_merge_models.update(checkpoint_info.metadata.get("sd_merge_models", {}))
 | |
| 
 | |
|         add_model_metadata(primary_model_info)
 | |
|         if secondary_model_info:
 | |
|             add_model_metadata(secondary_model_info)
 | |
|         if tertiary_model_info:
 | |
|             add_model_metadata(tertiary_model_info)
 | |
| 
 | |
|         metadata["sd_merge_models"] = json.dumps(sd_merge_models)
 | |
| 
 | |
|     _, extension = os.path.splitext(output_modelname)
 | |
|     if extension.lower() == ".safetensors":
 | |
|         safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata)
 | |
|     else:
 | |
|         torch.save(theta_0, output_modelname)
 | |
| 
 | |
|     sd_models.list_models()
 | |
|     created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None)
 | |
|     if created_model:
 | |
|         created_model.calculate_shorthash()
 | |
| 
 | |
|     create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)
 | |
| 
 | |
|     print(f"Checkpoint saved to {output_modelname}.")
 | |
|     shared.state.textinfo = "Checkpoint saved"
 | |
|     shared.state.end()
 | |
| 
 | |
|     return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname]
 | 
