mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			114 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| 
 | |
| import facexlib
 | |
| import gfpgan
 | |
| 
 | |
| import modules.face_restoration
 | |
| from modules import paths, shared, devices, modelloader, errors
 | |
| 
 | |
| model_dir = "GFPGAN"
 | |
| user_path = None
 | |
| model_path = os.path.join(paths.models_path, model_dir)
 | |
| model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
 | |
| have_gfpgan = False
 | |
| loaded_gfpgan_model = None
 | |
| 
 | |
| 
 | |
| def gfpgann():
 | |
|     global loaded_gfpgan_model
 | |
|     global model_path
 | |
|     if loaded_gfpgan_model is not None:
 | |
|         loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan)
 | |
|         return loaded_gfpgan_model
 | |
| 
 | |
|     if gfpgan_constructor is None:
 | |
|         return None
 | |
| 
 | |
|     models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN")
 | |
|     if len(models) == 1 and "http" in models[0]:
 | |
|         model_file = models[0]
 | |
|     elif len(models) != 0:
 | |
|         latest_file = max(models, key=os.path.getctime)
 | |
|         model_file = latest_file
 | |
|     else:
 | |
|         print("Unable to load gfpgan model!")
 | |
|         return None
 | |
|     if hasattr(facexlib.detection.retinaface, 'device'):
 | |
|         facexlib.detection.retinaface.device = devices.device_gfpgan
 | |
|     model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
 | |
|     loaded_gfpgan_model = model
 | |
| 
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def send_model_to(model, device):
 | |
|     model.gfpgan.to(device)
 | |
|     model.face_helper.face_det.to(device)
 | |
|     model.face_helper.face_parse.to(device)
 | |
| 
 | |
| 
 | |
| def gfpgan_fix_faces(np_image):
 | |
|     model = gfpgann()
 | |
|     if model is None:
 | |
|         return np_image
 | |
| 
 | |
|     send_model_to(model, devices.device_gfpgan)
 | |
| 
 | |
|     np_image_bgr = np_image[:, :, ::-1]
 | |
|     cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
 | |
|     np_image = gfpgan_output_bgr[:, :, ::-1]
 | |
| 
 | |
|     model.face_helper.clean_all()
 | |
| 
 | |
|     if shared.opts.face_restoration_unload:
 | |
|         send_model_to(model, devices.cpu)
 | |
| 
 | |
|     return np_image
 | |
| 
 | |
| 
 | |
| gfpgan_constructor = None
 | |
| 
 | |
| 
 | |
| def setup_model(dirname):
 | |
|     global model_path
 | |
|     if not os.path.exists(model_path):
 | |
|         os.makedirs(model_path)
 | |
| 
 | |
|     try:
 | |
|         from gfpgan import GFPGANer
 | |
|         from facexlib import detection, parsing  # noqa: F401
 | |
|         global user_path
 | |
|         global have_gfpgan
 | |
|         global gfpgan_constructor
 | |
| 
 | |
|         load_file_from_url_orig = gfpgan.utils.load_file_from_url
 | |
|         facex_load_file_from_url_orig = facexlib.detection.load_file_from_url
 | |
|         facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url
 | |
| 
 | |
|         def my_load_file_from_url(**kwargs):
 | |
|             return load_file_from_url_orig(**dict(kwargs, model_dir=model_path))
 | |
| 
 | |
|         def facex_load_file_from_url(**kwargs):
 | |
|             return facex_load_file_from_url_orig(**dict(kwargs, save_dir=model_path, model_dir=None))
 | |
| 
 | |
|         def facex_load_file_from_url2(**kwargs):
 | |
|             return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=model_path, model_dir=None))
 | |
| 
 | |
|         gfpgan.utils.load_file_from_url = my_load_file_from_url
 | |
|         facexlib.detection.load_file_from_url = facex_load_file_from_url
 | |
|         facexlib.parsing.load_file_from_url = facex_load_file_from_url2
 | |
|         user_path = dirname
 | |
|         have_gfpgan = True
 | |
|         gfpgan_constructor = GFPGANer
 | |
| 
 | |
|         class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration):
 | |
|             def name(self):
 | |
|                 return "GFPGAN"
 | |
| 
 | |
|             def restore(self, np_image):
 | |
|                 return gfpgan_fix_faces(np_image)
 | |
| 
 | |
|         shared.face_restorers.append(FaceRestorerGFPGAN())
 | |
|     except Exception:
 | |
|         errors.report("Error setting up GFPGAN", exc_info=True)
 | 
