mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			634 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			634 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| import math
 | |
| import psutil
 | |
| 
 | |
| import torch
 | |
| from torch import einsum
 | |
| 
 | |
| from ldm.util import default
 | |
| from einops import rearrange
 | |
| 
 | |
| from modules import shared, errors, devices, sub_quadratic_attention
 | |
| from modules.hypernetworks import hypernetwork
 | |
| 
 | |
| import ldm.modules.attention
 | |
| import ldm.modules.diffusionmodules.model
 | |
| 
 | |
| diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
 | |
| 
 | |
| 
 | |
| class SdOptimization:
 | |
|     name: str = None
 | |
|     label: str | None = None
 | |
|     cmd_opt: str | None = None
 | |
|     priority: int = 0
 | |
| 
 | |
|     def title(self):
 | |
|         if self.label is None:
 | |
|             return self.name
 | |
| 
 | |
|         return f"{self.name} - {self.label}"
 | |
| 
 | |
|     def is_available(self):
 | |
|         return True
 | |
| 
 | |
|     def apply(self):
 | |
|         pass
 | |
| 
 | |
|     def undo(self):
 | |
|         ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
 | |
|         ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
 | |
| 
 | |
| 
 | |
| class SdOptimizationXformers(SdOptimization):
 | |
|     name = "xformers"
 | |
|     cmd_opt = "xformers"
 | |
|     priority = 100
 | |
| 
 | |
|     def is_available(self):
 | |
|         return shared.cmd_opts.force_enable_xformers or (shared.xformers_available and torch.cuda.is_available() and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0))
 | |
| 
 | |
|     def apply(self):
 | |
|         ldm.modules.attention.CrossAttention.forward = xformers_attention_forward
 | |
|         ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
 | |
| 
 | |
| 
 | |
| class SdOptimizationSdpNoMem(SdOptimization):
 | |
|     name = "sdp-no-mem"
 | |
|     label = "scaled dot product without memory efficient attention"
 | |
|     cmd_opt = "opt_sdp_no_mem_attention"
 | |
|     priority = 80
 | |
| 
 | |
|     def is_available(self):
 | |
|         return hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention)
 | |
| 
 | |
|     def apply(self):
 | |
|         ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
 | |
|         ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
 | |
| 
 | |
| 
 | |
| class SdOptimizationSdp(SdOptimizationSdpNoMem):
 | |
|     name = "sdp"
 | |
|     label = "scaled dot product"
 | |
|     cmd_opt = "opt_sdp_attention"
 | |
|     priority = 70
 | |
| 
 | |
|     def apply(self):
 | |
|         ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
 | |
|         ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
 | |
| 
 | |
| 
 | |
| class SdOptimizationSubQuad(SdOptimization):
 | |
|     name = "sub-quadratic"
 | |
|     cmd_opt = "opt_sub_quad_attention"
 | |
|     priority = 10
 | |
| 
 | |
|     def apply(self):
 | |
|         ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
 | |
|         ldm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
 | |
| 
 | |
| 
 | |
| class SdOptimizationV1(SdOptimization):
 | |
|     name = "V1"
 | |
|     label = "original v1"
 | |
|     cmd_opt = "opt_split_attention_v1"
 | |
|     priority = 10
 | |
| 
 | |
| 
 | |
|     def apply(self):
 | |
|         ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
 | |
| 
 | |
| 
 | |
| class SdOptimizationInvokeAI(SdOptimization):
 | |
|     name = "InvokeAI"
 | |
|     cmd_opt = "opt_split_attention_invokeai"
 | |
| 
 | |
|     @property
 | |
|     def priority(self):
 | |
|         return 1000 if not torch.cuda.is_available() else 10
 | |
| 
 | |
|     def apply(self):
 | |
|         ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
 | |
| 
 | |
| 
 | |
| class SdOptimizationDoggettx(SdOptimization):
 | |
|     name = "Doggettx"
 | |
|     cmd_opt = "opt_split_attention"
 | |
|     priority = 90
 | |
| 
 | |
|     def apply(self):
 | |
|         ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
 | |
|         ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
 | |
| 
 | |
| 
 | |
| def list_optimizers(res):
 | |
|     res.extend([
 | |
|         SdOptimizationXformers(),
 | |
|         SdOptimizationSdpNoMem(),
 | |
|         SdOptimizationSdp(),
 | |
|         SdOptimizationSubQuad(),
 | |
|         SdOptimizationV1(),
 | |
|         SdOptimizationInvokeAI(),
 | |
|         SdOptimizationDoggettx(),
 | |
|     ])
 | |
| 
 | |
| 
 | |
| if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
 | |
|     try:
 | |
|         import xformers.ops
 | |
|         shared.xformers_available = True
 | |
|     except Exception:
 | |
|         errors.report("Cannot import xformers", exc_info=True)
 | |
| 
 | |
| 
 | |
| def get_available_vram():
 | |
|     if shared.device.type == 'cuda':
 | |
|         stats = torch.cuda.memory_stats(shared.device)
 | |
|         mem_active = stats['active_bytes.all.current']
 | |
|         mem_reserved = stats['reserved_bytes.all.current']
 | |
|         mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
 | |
|         mem_free_torch = mem_reserved - mem_active
 | |
|         mem_free_total = mem_free_cuda + mem_free_torch
 | |
|         return mem_free_total
 | |
|     else:
 | |
|         return psutil.virtual_memory().available
 | |
| 
 | |
| 
 | |
| # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
 | |
| def split_cross_attention_forward_v1(self, x, context=None, mask=None):
 | |
|     h = self.heads
 | |
| 
 | |
|     q_in = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
 | |
|     k_in = self.to_k(context_k)
 | |
|     v_in = self.to_v(context_v)
 | |
|     del context, context_k, context_v, x
 | |
| 
 | |
|     q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
 | |
|     del q_in, k_in, v_in
 | |
| 
 | |
|     dtype = q.dtype
 | |
|     if shared.opts.upcast_attn:
 | |
|         q, k, v = q.float(), k.float(), v.float()
 | |
| 
 | |
|     with devices.without_autocast(disable=not shared.opts.upcast_attn):
 | |
|         r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
 | |
|         for i in range(0, q.shape[0], 2):
 | |
|             end = i + 2
 | |
|             s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
 | |
|             s1 *= self.scale
 | |
| 
 | |
|             s2 = s1.softmax(dim=-1)
 | |
|             del s1
 | |
| 
 | |
|             r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
 | |
|             del s2
 | |
|         del q, k, v
 | |
| 
 | |
|     r1 = r1.to(dtype)
 | |
| 
 | |
|     r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
 | |
|     del r1
 | |
| 
 | |
|     return self.to_out(r2)
 | |
| 
 | |
| 
 | |
| # taken from https://github.com/Doggettx/stable-diffusion and modified
 | |
| def split_cross_attention_forward(self, x, context=None, mask=None):
 | |
|     h = self.heads
 | |
| 
 | |
|     q_in = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
 | |
|     k_in = self.to_k(context_k)
 | |
|     v_in = self.to_v(context_v)
 | |
| 
 | |
|     dtype = q_in.dtype
 | |
|     if shared.opts.upcast_attn:
 | |
|         q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float()
 | |
| 
 | |
|     with devices.without_autocast(disable=not shared.opts.upcast_attn):
 | |
|         k_in = k_in * self.scale
 | |
| 
 | |
|         del context, x
 | |
| 
 | |
|         q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
 | |
|         del q_in, k_in, v_in
 | |
| 
 | |
|         r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
 | |
| 
 | |
|         mem_free_total = get_available_vram()
 | |
| 
 | |
|         gb = 1024 ** 3
 | |
|         tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
 | |
|         modifier = 3 if q.element_size() == 2 else 2.5
 | |
|         mem_required = tensor_size * modifier
 | |
|         steps = 1
 | |
| 
 | |
|         if mem_required > mem_free_total:
 | |
|             steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
 | |
|             # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
 | |
|             #       f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
 | |
| 
 | |
|         if steps > 64:
 | |
|             max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
 | |
|             raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
 | |
|                                f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
 | |
| 
 | |
|         slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
 | |
|         for i in range(0, q.shape[1], slice_size):
 | |
|             end = i + slice_size
 | |
|             s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
 | |
| 
 | |
|             s2 = s1.softmax(dim=-1, dtype=q.dtype)
 | |
|             del s1
 | |
| 
 | |
|             r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
 | |
|             del s2
 | |
| 
 | |
|         del q, k, v
 | |
| 
 | |
|     r1 = r1.to(dtype)
 | |
| 
 | |
|     r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
 | |
|     del r1
 | |
| 
 | |
|     return self.to_out(r2)
 | |
| 
 | |
| 
 | |
| # -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
 | |
| mem_total_gb = psutil.virtual_memory().total // (1 << 30)
 | |
| 
 | |
| def einsum_op_compvis(q, k, v):
 | |
|     s = einsum('b i d, b j d -> b i j', q, k)
 | |
|     s = s.softmax(dim=-1, dtype=s.dtype)
 | |
|     return einsum('b i j, b j d -> b i d', s, v)
 | |
| 
 | |
| def einsum_op_slice_0(q, k, v, slice_size):
 | |
|     r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
 | |
|     for i in range(0, q.shape[0], slice_size):
 | |
|         end = i + slice_size
 | |
|         r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
 | |
|     return r
 | |
| 
 | |
| def einsum_op_slice_1(q, k, v, slice_size):
 | |
|     r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
 | |
|     for i in range(0, q.shape[1], slice_size):
 | |
|         end = i + slice_size
 | |
|         r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
 | |
|     return r
 | |
| 
 | |
| def einsum_op_mps_v1(q, k, v):
 | |
|     if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
 | |
|         return einsum_op_compvis(q, k, v)
 | |
|     else:
 | |
|         slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
 | |
|         if slice_size % 4096 == 0:
 | |
|             slice_size -= 1
 | |
|         return einsum_op_slice_1(q, k, v, slice_size)
 | |
| 
 | |
| def einsum_op_mps_v2(q, k, v):
 | |
|     if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
 | |
|         return einsum_op_compvis(q, k, v)
 | |
|     else:
 | |
|         return einsum_op_slice_0(q, k, v, 1)
 | |
| 
 | |
| def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
 | |
|     size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
 | |
|     if size_mb <= max_tensor_mb:
 | |
|         return einsum_op_compvis(q, k, v)
 | |
|     div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
 | |
|     if div <= q.shape[0]:
 | |
|         return einsum_op_slice_0(q, k, v, q.shape[0] // div)
 | |
|     return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
 | |
| 
 | |
| def einsum_op_cuda(q, k, v):
 | |
|     stats = torch.cuda.memory_stats(q.device)
 | |
|     mem_active = stats['active_bytes.all.current']
 | |
|     mem_reserved = stats['reserved_bytes.all.current']
 | |
|     mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
 | |
|     mem_free_torch = mem_reserved - mem_active
 | |
|     mem_free_total = mem_free_cuda + mem_free_torch
 | |
|     # Divide factor of safety as there's copying and fragmentation
 | |
|     return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
 | |
| 
 | |
| def einsum_op(q, k, v):
 | |
|     if q.device.type == 'cuda':
 | |
|         return einsum_op_cuda(q, k, v)
 | |
| 
 | |
|     if q.device.type == 'mps':
 | |
|         if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
 | |
|             return einsum_op_mps_v1(q, k, v)
 | |
|         return einsum_op_mps_v2(q, k, v)
 | |
| 
 | |
|     # Smaller slices are faster due to L2/L3/SLC caches.
 | |
|     # Tested on i7 with 8MB L3 cache.
 | |
|     return einsum_op_tensor_mem(q, k, v, 32)
 | |
| 
 | |
| def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
 | |
|     h = self.heads
 | |
| 
 | |
|     q = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
 | |
|     k = self.to_k(context_k)
 | |
|     v = self.to_v(context_v)
 | |
|     del context, context_k, context_v, x
 | |
| 
 | |
|     dtype = q.dtype
 | |
|     if shared.opts.upcast_attn:
 | |
|         q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float()
 | |
| 
 | |
|     with devices.without_autocast(disable=not shared.opts.upcast_attn):
 | |
|         k = k * self.scale
 | |
| 
 | |
|         q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
 | |
|         r = einsum_op(q, k, v)
 | |
|     r = r.to(dtype)
 | |
|     return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
 | |
| 
 | |
| # -- End of code from https://github.com/invoke-ai/InvokeAI --
 | |
| 
 | |
| 
 | |
| # Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1
 | |
| # The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
 | |
| def sub_quad_attention_forward(self, x, context=None, mask=None):
 | |
|     assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."
 | |
| 
 | |
|     h = self.heads
 | |
| 
 | |
|     q = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
 | |
|     k = self.to_k(context_k)
 | |
|     v = self.to_v(context_v)
 | |
|     del context, context_k, context_v, x
 | |
| 
 | |
|     q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
 | |
|     k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
 | |
|     v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
 | |
| 
 | |
|     if q.device.type == 'mps':
 | |
|         q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
 | |
| 
 | |
|     dtype = q.dtype
 | |
|     if shared.opts.upcast_attn:
 | |
|         q, k = q.float(), k.float()
 | |
| 
 | |
|     x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
 | |
| 
 | |
|     x = x.to(dtype)
 | |
| 
 | |
|     x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)
 | |
| 
 | |
|     out_proj, dropout = self.to_out
 | |
|     x = out_proj(x)
 | |
|     x = dropout(x)
 | |
| 
 | |
|     return x
 | |
| 
 | |
| def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
 | |
|     bytes_per_token = torch.finfo(q.dtype).bits//8
 | |
|     batch_x_heads, q_tokens, _ = q.shape
 | |
|     _, k_tokens, _ = k.shape
 | |
|     qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
 | |
| 
 | |
|     if chunk_threshold is None:
 | |
|         chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7)
 | |
|     elif chunk_threshold == 0:
 | |
|         chunk_threshold_bytes = None
 | |
|     else:
 | |
|         chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram())
 | |
| 
 | |
|     if kv_chunk_size_min is None and chunk_threshold_bytes is not None:
 | |
|         kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2]))
 | |
|     elif kv_chunk_size_min == 0:
 | |
|         kv_chunk_size_min = None
 | |
| 
 | |
|     if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
 | |
|         # the big matmul fits into our memory limit; do everything in 1 chunk,
 | |
|         # i.e. send it down the unchunked fast-path
 | |
|         kv_chunk_size = k_tokens
 | |
| 
 | |
|     with devices.without_autocast(disable=q.dtype == v.dtype):
 | |
|         return sub_quadratic_attention.efficient_dot_product_attention(
 | |
|             q,
 | |
|             k,
 | |
|             v,
 | |
|             query_chunk_size=q_chunk_size,
 | |
|             kv_chunk_size=kv_chunk_size,
 | |
|             kv_chunk_size_min = kv_chunk_size_min,
 | |
|             use_checkpoint=use_checkpoint,
 | |
|         )
 | |
| 
 | |
| 
 | |
| def get_xformers_flash_attention_op(q, k, v):
 | |
|     if not shared.cmd_opts.xformers_flash_attention:
 | |
|         return None
 | |
| 
 | |
|     try:
 | |
|         flash_attention_op = xformers.ops.MemoryEfficientAttentionFlashAttentionOp
 | |
|         fw, bw = flash_attention_op
 | |
|         if fw.supports(xformers.ops.fmha.Inputs(query=q, key=k, value=v, attn_bias=None)):
 | |
|             return flash_attention_op
 | |
|     except Exception as e:
 | |
|         errors.display_once(e, "enabling flash attention")
 | |
| 
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def xformers_attention_forward(self, x, context=None, mask=None):
 | |
|     h = self.heads
 | |
|     q_in = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
 | |
|     k_in = self.to_k(context_k)
 | |
|     v_in = self.to_v(context_v)
 | |
| 
 | |
|     q, k, v = (rearrange(t, 'b n (h d) -> b n h d', h=h) for t in (q_in, k_in, v_in))
 | |
|     del q_in, k_in, v_in
 | |
| 
 | |
|     dtype = q.dtype
 | |
|     if shared.opts.upcast_attn:
 | |
|         q, k, v = q.float(), k.float(), v.float()
 | |
| 
 | |
|     out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
 | |
| 
 | |
|     out = out.to(dtype)
 | |
| 
 | |
|     out = rearrange(out, 'b n h d -> b n (h d)', h=h)
 | |
|     return self.to_out(out)
 | |
| 
 | |
| # Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py
 | |
| # The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface
 | |
| def scaled_dot_product_attention_forward(self, x, context=None, mask=None):
 | |
|     batch_size, sequence_length, inner_dim = x.shape
 | |
| 
 | |
|     if mask is not None:
 | |
|         mask = self.prepare_attention_mask(mask, sequence_length, batch_size)
 | |
|         mask = mask.view(batch_size, self.heads, -1, mask.shape[-1])
 | |
| 
 | |
|     h = self.heads
 | |
|     q_in = self.to_q(x)
 | |
|     context = default(context, x)
 | |
| 
 | |
|     context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
 | |
|     k_in = self.to_k(context_k)
 | |
|     v_in = self.to_v(context_v)
 | |
| 
 | |
|     head_dim = inner_dim // h
 | |
|     q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
 | |
|     k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
 | |
|     v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
 | |
| 
 | |
|     del q_in, k_in, v_in
 | |
| 
 | |
|     dtype = q.dtype
 | |
|     if shared.opts.upcast_attn:
 | |
|         q, k, v = q.float(), k.float(), v.float()
 | |
| 
 | |
|     # the output of sdp = (batch, num_heads, seq_len, head_dim)
 | |
|     hidden_states = torch.nn.functional.scaled_dot_product_attention(
 | |
|         q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
 | |
|     )
 | |
| 
 | |
|     hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, h * head_dim)
 | |
|     hidden_states = hidden_states.to(dtype)
 | |
| 
 | |
|     # linear proj
 | |
|     hidden_states = self.to_out[0](hidden_states)
 | |
|     # dropout
 | |
|     hidden_states = self.to_out[1](hidden_states)
 | |
|     return hidden_states
 | |
| 
 | |
| def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None):
 | |
|     with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
 | |
|         return scaled_dot_product_attention_forward(self, x, context, mask)
 | |
| 
 | |
| def cross_attention_attnblock_forward(self, x):
 | |
|         h_ = x
 | |
|         h_ = self.norm(h_)
 | |
|         q1 = self.q(h_)
 | |
|         k1 = self.k(h_)
 | |
|         v = self.v(h_)
 | |
| 
 | |
|         # compute attention
 | |
|         b, c, h, w = q1.shape
 | |
| 
 | |
|         q2 = q1.reshape(b, c, h*w)
 | |
|         del q1
 | |
| 
 | |
|         q = q2.permute(0, 2, 1)   # b,hw,c
 | |
|         del q2
 | |
| 
 | |
|         k = k1.reshape(b, c, h*w) # b,c,hw
 | |
|         del k1
 | |
| 
 | |
|         h_ = torch.zeros_like(k, device=q.device)
 | |
| 
 | |
|         mem_free_total = get_available_vram()
 | |
| 
 | |
|         tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
 | |
|         mem_required = tensor_size * 2.5
 | |
|         steps = 1
 | |
| 
 | |
|         if mem_required > mem_free_total:
 | |
|             steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
 | |
| 
 | |
|         slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
 | |
|         for i in range(0, q.shape[1], slice_size):
 | |
|             end = i + slice_size
 | |
| 
 | |
|             w1 = torch.bmm(q[:, i:end], k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
 | |
|             w2 = w1 * (int(c)**(-0.5))
 | |
|             del w1
 | |
|             w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
 | |
|             del w2
 | |
| 
 | |
|             # attend to values
 | |
|             v1 = v.reshape(b, c, h*w)
 | |
|             w4 = w3.permute(0, 2, 1)   # b,hw,hw (first hw of k, second of q)
 | |
|             del w3
 | |
| 
 | |
|             h_[:, :, i:end] = torch.bmm(v1, w4)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
 | |
|             del v1, w4
 | |
| 
 | |
|         h2 = h_.reshape(b, c, h, w)
 | |
|         del h_
 | |
| 
 | |
|         h3 = self.proj_out(h2)
 | |
|         del h2
 | |
| 
 | |
|         h3 += x
 | |
| 
 | |
|         return h3
 | |
| 
 | |
| def xformers_attnblock_forward(self, x):
 | |
|     try:
 | |
|         h_ = x
 | |
|         h_ = self.norm(h_)
 | |
|         q = self.q(h_)
 | |
|         k = self.k(h_)
 | |
|         v = self.v(h_)
 | |
|         b, c, h, w = q.shape
 | |
|         q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
 | |
|         dtype = q.dtype
 | |
|         if shared.opts.upcast_attn:
 | |
|             q, k = q.float(), k.float()
 | |
|         q = q.contiguous()
 | |
|         k = k.contiguous()
 | |
|         v = v.contiguous()
 | |
|         out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v))
 | |
|         out = out.to(dtype)
 | |
|         out = rearrange(out, 'b (h w) c -> b c h w', h=h)
 | |
|         out = self.proj_out(out)
 | |
|         return x + out
 | |
|     except NotImplementedError:
 | |
|         return cross_attention_attnblock_forward(self, x)
 | |
| 
 | |
| def sdp_attnblock_forward(self, x):
 | |
|     h_ = x
 | |
|     h_ = self.norm(h_)
 | |
|     q = self.q(h_)
 | |
|     k = self.k(h_)
 | |
|     v = self.v(h_)
 | |
|     b, c, h, w = q.shape
 | |
|     q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
 | |
|     dtype = q.dtype
 | |
|     if shared.opts.upcast_attn:
 | |
|         q, k = q.float(), k.float()
 | |
|     q = q.contiguous()
 | |
|     k = k.contiguous()
 | |
|     v = v.contiguous()
 | |
|     out = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
 | |
|     out = out.to(dtype)
 | |
|     out = rearrange(out, 'b (h w) c -> b c h w', h=h)
 | |
|     out = self.proj_out(out)
 | |
|     return x + out
 | |
| 
 | |
| def sdp_no_mem_attnblock_forward(self, x):
 | |
|     with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
 | |
|         return sdp_attnblock_forward(self, x)
 | |
| 
 | |
| def sub_quad_attnblock_forward(self, x):
 | |
|     h_ = x
 | |
|     h_ = self.norm(h_)
 | |
|     q = self.q(h_)
 | |
|     k = self.k(h_)
 | |
|     v = self.v(h_)
 | |
|     b, c, h, w = q.shape
 | |
|     q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
 | |
|     q = q.contiguous()
 | |
|     k = k.contiguous()
 | |
|     v = v.contiguous()
 | |
|     out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
 | |
|     out = rearrange(out, 'b (h w) c -> b c h w', h=h)
 | |
|     out = self.proj_out(out)
 | |
|     return x + out
 | 
