mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			443 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			443 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from collections import deque
 | |
| import torch
 | |
| import inspect
 | |
| import k_diffusion.sampling
 | |
| from modules import prompt_parser, devices, sd_samplers_common
 | |
| 
 | |
| from modules.shared import opts, state
 | |
| import modules.shared as shared
 | |
| from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
 | |
| from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
 | |
| from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
 | |
| 
 | |
| samplers_k_diffusion = [
 | |
|     ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
 | |
|     ('Euler', 'sample_euler', ['k_euler'], {}),
 | |
|     ('LMS', 'sample_lms', ['k_lms'], {}),
 | |
|     ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
 | |
|     ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
 | |
|     ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
 | |
|     ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
 | |
|     ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
 | |
|     ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
 | |
|     ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
 | |
|     ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
 | |
|     ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
 | |
|     ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
 | |
|     ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
 | |
|     ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
 | |
|     ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
 | |
|     ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
 | |
|     ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
 | |
|     ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
 | |
| ]
 | |
| 
 | |
| samplers_data_k_diffusion = [
 | |
|     sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
 | |
|     for label, funcname, aliases, options in samplers_k_diffusion
 | |
|     if hasattr(k_diffusion.sampling, funcname)
 | |
| ]
 | |
| 
 | |
| sampler_extra_params = {
 | |
|     'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
 | |
|     'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
 | |
|     'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
 | |
| }
 | |
| 
 | |
| k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
 | |
| k_diffusion_scheduler = {
 | |
|     'Automatic': None,
 | |
|     'karras': k_diffusion.sampling.get_sigmas_karras,
 | |
|     'exponential': k_diffusion.sampling.get_sigmas_exponential,
 | |
|     'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
 | |
| }
 | |
| 
 | |
| 
 | |
| class CFGDenoiser(torch.nn.Module):
 | |
|     """
 | |
|     Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
 | |
|     that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
 | |
|     instead of one. Originally, the second prompt is just an empty string, but we use non-empty
 | |
|     negative prompt.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, model):
 | |
|         super().__init__()
 | |
|         self.inner_model = model
 | |
|         self.mask = None
 | |
|         self.nmask = None
 | |
|         self.init_latent = None
 | |
|         self.step = 0
 | |
|         self.image_cfg_scale = None
 | |
| 
 | |
|     def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
 | |
|         denoised_uncond = x_out[-uncond.shape[0]:]
 | |
|         denoised = torch.clone(denoised_uncond)
 | |
| 
 | |
|         for i, conds in enumerate(conds_list):
 | |
|             for cond_index, weight in conds:
 | |
|                 denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
 | |
| 
 | |
|         return denoised
 | |
| 
 | |
|     def combine_denoised_for_edit_model(self, x_out, cond_scale):
 | |
|         out_cond, out_img_cond, out_uncond = x_out.chunk(3)
 | |
|         denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
 | |
| 
 | |
|         return denoised
 | |
| 
 | |
|     def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
 | |
|         if state.interrupted or state.skipped:
 | |
|             raise sd_samplers_common.InterruptedException
 | |
| 
 | |
|         # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
 | |
|         # so is_edit_model is set to False to support AND composition.
 | |
|         is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
 | |
| 
 | |
|         conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
 | |
|         uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
 | |
| 
 | |
|         assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
 | |
| 
 | |
|         batch_size = len(conds_list)
 | |
|         repeats = [len(conds_list[i]) for i in range(batch_size)]
 | |
| 
 | |
|         if shared.sd_model.model.conditioning_key == "crossattn-adm":
 | |
|             image_uncond = torch.zeros_like(image_cond)
 | |
|             make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
 | |
|         else:
 | |
|             image_uncond = image_cond
 | |
|             make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
 | |
| 
 | |
|         if not is_edit_model:
 | |
|             x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
 | |
|             sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
 | |
|             image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
 | |
|         else:
 | |
|             x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
 | |
|             sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
 | |
|             image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
 | |
| 
 | |
|         denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
 | |
|         cfg_denoiser_callback(denoiser_params)
 | |
|         x_in = denoiser_params.x
 | |
|         image_cond_in = denoiser_params.image_cond
 | |
|         sigma_in = denoiser_params.sigma
 | |
|         tensor = denoiser_params.text_cond
 | |
|         uncond = denoiser_params.text_uncond
 | |
|         skip_uncond = False
 | |
| 
 | |
|         # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
 | |
|         if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
 | |
|             skip_uncond = True
 | |
|             x_in = x_in[:-batch_size]
 | |
|             sigma_in = sigma_in[:-batch_size]
 | |
| 
 | |
|         # TODO add infotext entry
 | |
|         if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
 | |
|             empty = shared.sd_model.cond_stage_model_empty_prompt
 | |
|             num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
 | |
| 
 | |
|             if num_repeats < 0:
 | |
|                 tensor = torch.cat([tensor, empty.repeat((tensor.shape[0], -num_repeats, 1))], axis=1)
 | |
|             elif num_repeats > 0:
 | |
|                 uncond = torch.cat([uncond, empty.repeat((uncond.shape[0], num_repeats, 1))], axis=1)
 | |
| 
 | |
|         if tensor.shape[1] == uncond.shape[1] or skip_uncond:
 | |
|             if is_edit_model:
 | |
|                 cond_in = torch.cat([tensor, uncond, uncond])
 | |
|             elif skip_uncond:
 | |
|                 cond_in = tensor
 | |
|             else:
 | |
|                 cond_in = torch.cat([tensor, uncond])
 | |
| 
 | |
|             if shared.batch_cond_uncond:
 | |
|                 x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
 | |
|             else:
 | |
|                 x_out = torch.zeros_like(x_in)
 | |
|                 for batch_offset in range(0, x_out.shape[0], batch_size):
 | |
|                     a = batch_offset
 | |
|                     b = a + batch_size
 | |
|                     x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict([cond_in[a:b]], image_cond_in[a:b]))
 | |
|         else:
 | |
|             x_out = torch.zeros_like(x_in)
 | |
|             batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
 | |
|             for batch_offset in range(0, tensor.shape[0], batch_size):
 | |
|                 a = batch_offset
 | |
|                 b = min(a + batch_size, tensor.shape[0])
 | |
| 
 | |
|                 if not is_edit_model:
 | |
|                     c_crossattn = [tensor[a:b]]
 | |
|                 else:
 | |
|                     c_crossattn = torch.cat([tensor[a:b]], uncond)
 | |
| 
 | |
|                 x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
 | |
| 
 | |
|             if not skip_uncond:
 | |
|                 x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
 | |
| 
 | |
|         denoised_image_indexes = [x[0][0] for x in conds_list]
 | |
|         if skip_uncond:
 | |
|             fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
 | |
|             x_out = torch.cat([x_out, fake_uncond])  # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
 | |
| 
 | |
|         denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
 | |
|         cfg_denoised_callback(denoised_params)
 | |
| 
 | |
|         devices.test_for_nans(x_out, "unet")
 | |
| 
 | |
|         if opts.live_preview_content == "Prompt":
 | |
|             sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
 | |
|         elif opts.live_preview_content == "Negative prompt":
 | |
|             sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
 | |
| 
 | |
|         if is_edit_model:
 | |
|             denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
 | |
|         elif skip_uncond:
 | |
|             denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
 | |
|         else:
 | |
|             denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
 | |
| 
 | |
|         if self.mask is not None:
 | |
|             denoised = self.init_latent * self.mask + self.nmask * denoised
 | |
| 
 | |
|         after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
 | |
|         cfg_after_cfg_callback(after_cfg_callback_params)
 | |
|         denoised = after_cfg_callback_params.x
 | |
| 
 | |
|         self.step += 1
 | |
|         return denoised
 | |
| 
 | |
| 
 | |
| class TorchHijack:
 | |
|     def __init__(self, sampler_noises):
 | |
|         # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
 | |
|         # implementation.
 | |
|         self.sampler_noises = deque(sampler_noises)
 | |
| 
 | |
|     def __getattr__(self, item):
 | |
|         if item == 'randn_like':
 | |
|             return self.randn_like
 | |
| 
 | |
|         if hasattr(torch, item):
 | |
|             return getattr(torch, item)
 | |
| 
 | |
|         raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
 | |
| 
 | |
|     def randn_like(self, x):
 | |
|         if self.sampler_noises:
 | |
|             noise = self.sampler_noises.popleft()
 | |
|             if noise.shape == x.shape:
 | |
|                 return noise
 | |
| 
 | |
|         if opts.randn_source == "CPU" or x.device.type == 'mps':
 | |
|             return torch.randn_like(x, device=devices.cpu).to(x.device)
 | |
|         else:
 | |
|             return torch.randn_like(x)
 | |
| 
 | |
| 
 | |
| class KDiffusionSampler:
 | |
|     def __init__(self, funcname, sd_model):
 | |
|         denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
 | |
| 
 | |
|         self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
 | |
|         self.funcname = funcname
 | |
|         self.func = getattr(k_diffusion.sampling, self.funcname)
 | |
|         self.extra_params = sampler_extra_params.get(funcname, [])
 | |
|         self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
 | |
|         self.sampler_noises = None
 | |
|         self.stop_at = None
 | |
|         self.eta = None
 | |
|         self.config = None  # set by the function calling the constructor
 | |
|         self.last_latent = None
 | |
|         self.s_min_uncond = None
 | |
| 
 | |
|         self.conditioning_key = sd_model.model.conditioning_key
 | |
| 
 | |
|     def callback_state(self, d):
 | |
|         step = d['i']
 | |
|         latent = d["denoised"]
 | |
|         if opts.live_preview_content == "Combined":
 | |
|             sd_samplers_common.store_latent(latent)
 | |
|         self.last_latent = latent
 | |
| 
 | |
|         if self.stop_at is not None and step > self.stop_at:
 | |
|             raise sd_samplers_common.InterruptedException
 | |
| 
 | |
|         state.sampling_step = step
 | |
|         shared.total_tqdm.update()
 | |
| 
 | |
|     def launch_sampling(self, steps, func):
 | |
|         state.sampling_steps = steps
 | |
|         state.sampling_step = 0
 | |
| 
 | |
|         try:
 | |
|             return func()
 | |
|         except RecursionError:
 | |
|             print(
 | |
|                 'Encountered RecursionError during sampling, returning last latent. '
 | |
|                 'rho >5 with a polyexponential scheduler may cause this error. '
 | |
|                 'You should try to use a smaller rho value instead.'
 | |
|             )
 | |
|             return self.last_latent
 | |
|         except sd_samplers_common.InterruptedException:
 | |
|             return self.last_latent
 | |
| 
 | |
|     def number_of_needed_noises(self, p):
 | |
|         return p.steps
 | |
| 
 | |
|     def initialize(self, p):
 | |
|         self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
 | |
|         self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
 | |
|         self.model_wrap_cfg.step = 0
 | |
|         self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
 | |
|         self.eta = p.eta if p.eta is not None else opts.eta_ancestral
 | |
|         self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
 | |
| 
 | |
|         k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
 | |
| 
 | |
|         extra_params_kwargs = {}
 | |
|         for param_name in self.extra_params:
 | |
|             if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
 | |
|                 extra_params_kwargs[param_name] = getattr(p, param_name)
 | |
| 
 | |
|         if 'eta' in inspect.signature(self.func).parameters:
 | |
|             if self.eta != 1.0:
 | |
|                 p.extra_generation_params["Eta"] = self.eta
 | |
| 
 | |
|             extra_params_kwargs['eta'] = self.eta
 | |
| 
 | |
|         return extra_params_kwargs
 | |
| 
 | |
|     def get_sigmas(self, p, steps):
 | |
|         discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
 | |
|         if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
 | |
|             discard_next_to_last_sigma = True
 | |
|             p.extra_generation_params["Discard penultimate sigma"] = True
 | |
| 
 | |
|         steps += 1 if discard_next_to_last_sigma else 0
 | |
| 
 | |
|         if p.sampler_noise_scheduler_override:
 | |
|             sigmas = p.sampler_noise_scheduler_override(steps)
 | |
|         elif opts.k_sched_type != "Automatic":
 | |
|             m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
 | |
|             sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
 | |
|             sigmas_kwargs = {
 | |
|                 'sigma_min': sigma_min,
 | |
|                 'sigma_max': sigma_max,
 | |
|             }
 | |
| 
 | |
|             sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
 | |
|             p.extra_generation_params["Schedule type"] = opts.k_sched_type
 | |
| 
 | |
|             if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
 | |
|                 sigmas_kwargs['sigma_min'] = opts.sigma_min
 | |
|                 p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
 | |
|             if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
 | |
|                 sigmas_kwargs['sigma_max'] = opts.sigma_max
 | |
|                 p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
 | |
| 
 | |
|             default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
 | |
| 
 | |
|             if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
 | |
|                 sigmas_kwargs['rho'] = opts.rho
 | |
|                 p.extra_generation_params["Schedule rho"] = opts.rho
 | |
| 
 | |
|             sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
 | |
|         elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
 | |
|             sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
 | |
| 
 | |
|             sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
 | |
|         else:
 | |
|             sigmas = self.model_wrap.get_sigmas(steps)
 | |
| 
 | |
|         if discard_next_to_last_sigma:
 | |
|             sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
 | |
| 
 | |
|         return sigmas
 | |
| 
 | |
|     def create_noise_sampler(self, x, sigmas, p):
 | |
|         """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
 | |
|         if shared.opts.no_dpmpp_sde_batch_determinism:
 | |
|             return None
 | |
| 
 | |
|         from k_diffusion.sampling import BrownianTreeNoiseSampler
 | |
|         sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
 | |
|         current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
 | |
|         return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
 | |
| 
 | |
|     def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
 | |
|         steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
 | |
| 
 | |
|         sigmas = self.get_sigmas(p, steps)
 | |
| 
 | |
|         sigma_sched = sigmas[steps - t_enc - 1:]
 | |
|         xi = x + noise * sigma_sched[0]
 | |
| 
 | |
|         extra_params_kwargs = self.initialize(p)
 | |
|         parameters = inspect.signature(self.func).parameters
 | |
| 
 | |
|         if 'sigma_min' in parameters:
 | |
|             ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
 | |
|             extra_params_kwargs['sigma_min'] = sigma_sched[-2]
 | |
|         if 'sigma_max' in parameters:
 | |
|             extra_params_kwargs['sigma_max'] = sigma_sched[0]
 | |
|         if 'n' in parameters:
 | |
|             extra_params_kwargs['n'] = len(sigma_sched) - 1
 | |
|         if 'sigma_sched' in parameters:
 | |
|             extra_params_kwargs['sigma_sched'] = sigma_sched
 | |
|         if 'sigmas' in parameters:
 | |
|             extra_params_kwargs['sigmas'] = sigma_sched
 | |
| 
 | |
|         if self.config.options.get('brownian_noise', False):
 | |
|             noise_sampler = self.create_noise_sampler(x, sigmas, p)
 | |
|             extra_params_kwargs['noise_sampler'] = noise_sampler
 | |
| 
 | |
|         self.model_wrap_cfg.init_latent = x
 | |
|         self.last_latent = x
 | |
|         extra_args = {
 | |
|             'cond': conditioning,
 | |
|             'image_cond': image_conditioning,
 | |
|             'uncond': unconditional_conditioning,
 | |
|             'cond_scale': p.cfg_scale,
 | |
|             's_min_uncond': self.s_min_uncond
 | |
|         }
 | |
| 
 | |
|         samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
 | |
| 
 | |
|         return samples
 | |
| 
 | |
|     def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
 | |
|         steps = steps or p.steps
 | |
| 
 | |
|         sigmas = self.get_sigmas(p, steps)
 | |
| 
 | |
|         x = x * sigmas[0]
 | |
| 
 | |
|         extra_params_kwargs = self.initialize(p)
 | |
|         parameters = inspect.signature(self.func).parameters
 | |
| 
 | |
|         if 'sigma_min' in parameters:
 | |
|             extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
 | |
|             extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
 | |
|             if 'n' in parameters:
 | |
|                 extra_params_kwargs['n'] = steps
 | |
|         else:
 | |
|             extra_params_kwargs['sigmas'] = sigmas
 | |
| 
 | |
|         if self.config.options.get('brownian_noise', False):
 | |
|             noise_sampler = self.create_noise_sampler(x, sigmas, p)
 | |
|             extra_params_kwargs['noise_sampler'] = noise_sampler
 | |
| 
 | |
|         self.last_latent = x
 | |
|         samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
 | |
|             'cond': conditioning,
 | |
|             'image_cond': image_conditioning,
 | |
|             'uncond': unconditional_conditioning,
 | |
|             'cond_scale': p.cfg_scale,
 | |
|             's_min_uncond': self.s_min_uncond
 | |
|         }, disable=False, callback=self.callback_state, **extra_params_kwargs))
 | |
| 
 | |
|         return samples
 | |
| 
 | 
