mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| Tiny AutoEncoder for Stable Diffusion
 | |
| (DNN for encoding / decoding SD's latent space)
 | |
| 
 | |
| https://github.com/madebyollin/taesd
 | |
| """
 | |
| import os
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| 
 | |
| from modules import devices, paths_internal
 | |
| 
 | |
| sd_vae_taesd = None
 | |
| 
 | |
| 
 | |
| def conv(n_in, n_out, **kwargs):
 | |
|     return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
 | |
| 
 | |
| 
 | |
| class Clamp(nn.Module):
 | |
|     @staticmethod
 | |
|     def forward(x):
 | |
|         return torch.tanh(x / 3) * 3
 | |
| 
 | |
| 
 | |
| class Block(nn.Module):
 | |
|     def __init__(self, n_in, n_out):
 | |
|         super().__init__()
 | |
|         self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
 | |
|         self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
 | |
|         self.fuse = nn.ReLU()
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.fuse(self.conv(x) + self.skip(x))
 | |
| 
 | |
| 
 | |
| def decoder():
 | |
|     return nn.Sequential(
 | |
|         Clamp(), conv(4, 64), nn.ReLU(),
 | |
|         Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | |
|         Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | |
|         Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | |
|         Block(64, 64), conv(64, 3),
 | |
|     )
 | |
| 
 | |
| 
 | |
| class TAESD(nn.Module):
 | |
|     latent_magnitude = 3
 | |
|     latent_shift = 0.5
 | |
| 
 | |
|     def __init__(self, decoder_path="taesd_decoder.pth"):
 | |
|         """Initialize pretrained TAESD on the given device from the given checkpoints."""
 | |
|         super().__init__()
 | |
|         self.decoder = decoder()
 | |
|         self.decoder.load_state_dict(
 | |
|             torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
 | |
| 
 | |
|     @staticmethod
 | |
|     def unscale_latents(x):
 | |
|         """[0, 1] -> raw latents"""
 | |
|         return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
 | |
| 
 | |
| 
 | |
| def download_model(model_path):
 | |
|     model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth'
 | |
| 
 | |
|     if not os.path.exists(model_path):
 | |
|         os.makedirs(os.path.dirname(model_path), exist_ok=True)
 | |
| 
 | |
|         print(f'Downloading TAESD decoder to: {model_path}')
 | |
|         torch.hub.download_url_to_file(model_url, model_path)
 | |
| 
 | |
| 
 | |
| def model():
 | |
|     global sd_vae_taesd
 | |
| 
 | |
|     if sd_vae_taesd is None:
 | |
|         model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth")
 | |
|         download_model(model_path)
 | |
| 
 | |
|         if os.path.exists(model_path):
 | |
|             sd_vae_taesd = TAESD(model_path)
 | |
|             sd_vae_taesd.eval()
 | |
|             sd_vae_taesd.to(devices.device, devices.dtype)
 | |
|         else:
 | |
|             raise FileNotFoundError('TAESD model not found')
 | |
| 
 | |
|     return sd_vae_taesd.decoder
 | 
