mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			342 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			342 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import cv2
 | |
| import requests
 | |
| import os
 | |
| import numpy as np
 | |
| from PIL import ImageDraw
 | |
| 
 | |
| GREEN = "#0F0"
 | |
| BLUE = "#00F"
 | |
| RED = "#F00"
 | |
| 
 | |
| 
 | |
| def crop_image(im, settings):
 | |
|     """ Intelligently crop an image to the subject matter """
 | |
| 
 | |
|     scale_by = 1
 | |
|     if is_landscape(im.width, im.height):
 | |
|         scale_by = settings.crop_height / im.height
 | |
|     elif is_portrait(im.width, im.height):
 | |
|         scale_by = settings.crop_width / im.width
 | |
|     elif is_square(im.width, im.height):
 | |
|         if is_square(settings.crop_width, settings.crop_height):
 | |
|             scale_by = settings.crop_width / im.width
 | |
|         elif is_landscape(settings.crop_width, settings.crop_height):
 | |
|             scale_by = settings.crop_width / im.width
 | |
|         elif is_portrait(settings.crop_width, settings.crop_height):
 | |
|             scale_by = settings.crop_height / im.height
 | |
| 
 | |
| 
 | |
|     im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
 | |
|     im_debug = im.copy()
 | |
| 
 | |
|     focus = focal_point(im_debug, settings)
 | |
| 
 | |
|     # take the focal point and turn it into crop coordinates that try to center over the focal
 | |
|     # point but then get adjusted back into the frame
 | |
|     y_half = int(settings.crop_height / 2)
 | |
|     x_half = int(settings.crop_width / 2)
 | |
| 
 | |
|     x1 = focus.x - x_half
 | |
|     if x1 < 0:
 | |
|         x1 = 0
 | |
|     elif x1 + settings.crop_width > im.width:
 | |
|         x1 = im.width - settings.crop_width
 | |
| 
 | |
|     y1 = focus.y - y_half
 | |
|     if y1 < 0:
 | |
|         y1 = 0
 | |
|     elif y1 + settings.crop_height > im.height:
 | |
|         y1 = im.height - settings.crop_height
 | |
| 
 | |
|     x2 = x1 + settings.crop_width
 | |
|     y2 = y1 + settings.crop_height
 | |
| 
 | |
|     crop = [x1, y1, x2, y2]
 | |
| 
 | |
|     results = []
 | |
| 
 | |
|     results.append(im.crop(tuple(crop)))
 | |
| 
 | |
|     if settings.annotate_image:
 | |
|         d = ImageDraw.Draw(im_debug)
 | |
|         rect = list(crop)
 | |
|         rect[2] -= 1
 | |
|         rect[3] -= 1
 | |
|         d.rectangle(rect, outline=GREEN)
 | |
|         results.append(im_debug)
 | |
|         if settings.destop_view_image:
 | |
|             im_debug.show()
 | |
| 
 | |
|     return results
 | |
| 
 | |
| def focal_point(im, settings):
 | |
|     corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
 | |
|     entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
 | |
|     face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
 | |
| 
 | |
|     pois = []
 | |
| 
 | |
|     weight_pref_total = 0
 | |
|     if corner_points:
 | |
|       weight_pref_total += settings.corner_points_weight
 | |
|     if entropy_points:
 | |
|       weight_pref_total += settings.entropy_points_weight
 | |
|     if face_points:
 | |
|       weight_pref_total += settings.face_points_weight
 | |
| 
 | |
|     corner_centroid = None
 | |
|     if corner_points:
 | |
|       corner_centroid = centroid(corner_points)
 | |
|       corner_centroid.weight = settings.corner_points_weight / weight_pref_total
 | |
|       pois.append(corner_centroid)
 | |
| 
 | |
|     entropy_centroid = None
 | |
|     if entropy_points:
 | |
|       entropy_centroid = centroid(entropy_points)
 | |
|       entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
 | |
|       pois.append(entropy_centroid)
 | |
| 
 | |
|     face_centroid = None
 | |
|     if face_points:
 | |
|       face_centroid = centroid(face_points)
 | |
|       face_centroid.weight = settings.face_points_weight / weight_pref_total
 | |
|       pois.append(face_centroid)
 | |
| 
 | |
|     average_point = poi_average(pois, settings)
 | |
| 
 | |
|     if settings.annotate_image:
 | |
|       d = ImageDraw.Draw(im)
 | |
|       max_size = min(im.width, im.height) * 0.07
 | |
|       if corner_centroid is not None:
 | |
|         color = BLUE
 | |
|         box = corner_centroid.bounding(max_size * corner_centroid.weight)
 | |
|         d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
 | |
|         d.ellipse(box, outline=color)
 | |
|         if len(corner_points) > 1:
 | |
|           for f in corner_points:
 | |
|             d.rectangle(f.bounding(4), outline=color)
 | |
|       if entropy_centroid is not None:
 | |
|         color = "#ff0"
 | |
|         box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
 | |
|         d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
 | |
|         d.ellipse(box, outline=color)
 | |
|         if len(entropy_points) > 1:
 | |
|           for f in entropy_points:
 | |
|             d.rectangle(f.bounding(4), outline=color)
 | |
|       if face_centroid is not None:
 | |
|         color = RED
 | |
|         box = face_centroid.bounding(max_size * face_centroid.weight)
 | |
|         d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color)
 | |
|         d.ellipse(box, outline=color)
 | |
|         if len(face_points) > 1:
 | |
|           for f in face_points:
 | |
|             d.rectangle(f.bounding(4), outline=color)
 | |
| 
 | |
|       d.ellipse(average_point.bounding(max_size), outline=GREEN)
 | |
| 
 | |
|     return average_point
 | |
| 
 | |
| 
 | |
| def image_face_points(im, settings):
 | |
|     if settings.dnn_model_path is not None:
 | |
|       detector = cv2.FaceDetectorYN.create(
 | |
|           settings.dnn_model_path,
 | |
|           "",
 | |
|           (im.width, im.height),
 | |
|           0.9, # score threshold
 | |
|           0.3, # nms threshold
 | |
|           5000 # keep top k before nms
 | |
|       )
 | |
|       faces = detector.detect(np.array(im))
 | |
|       results = []
 | |
|       if faces[1] is not None:
 | |
|         for face in faces[1]:
 | |
|           x = face[0]
 | |
|           y = face[1]
 | |
|           w = face[2]
 | |
|           h = face[3]
 | |
|           results.append(
 | |
|             PointOfInterest(
 | |
|               int(x + (w * 0.5)), # face focus left/right is center
 | |
|               int(y + (h * 0.33)), # face focus up/down is close to the top of the head
 | |
|               size = w,
 | |
|               weight = 1/len(faces[1])
 | |
|             )
 | |
|           )
 | |
|       return results
 | |
|     else:
 | |
|       np_im = np.array(im)
 | |
|       gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
 | |
| 
 | |
|       tries = [
 | |
|         [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
 | |
|         [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
 | |
|         [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
 | |
|         [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
 | |
|         [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
 | |
|         [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
 | |
|         [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
 | |
|         [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
 | |
|       ]
 | |
|       for t in tries:
 | |
|         classifier = cv2.CascadeClassifier(t[0])
 | |
|         minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
 | |
|         try:
 | |
|           faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
 | |
|             minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
 | |
|         except Exception:
 | |
|           continue
 | |
| 
 | |
|         if faces:
 | |
|           rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
 | |
|           return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
 | |
|     return []
 | |
| 
 | |
| 
 | |
| def image_corner_points(im, settings):
 | |
|     grayscale = im.convert("L")
 | |
| 
 | |
|     # naive attempt at preventing focal points from collecting at watermarks near the bottom
 | |
|     gd = ImageDraw.Draw(grayscale)
 | |
|     gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
 | |
| 
 | |
|     np_im = np.array(grayscale)
 | |
| 
 | |
|     points = cv2.goodFeaturesToTrack(
 | |
|         np_im,
 | |
|         maxCorners=100,
 | |
|         qualityLevel=0.04,
 | |
|         minDistance=min(grayscale.width, grayscale.height)*0.06,
 | |
|         useHarrisDetector=False,
 | |
|     )
 | |
| 
 | |
|     if points is None:
 | |
|         return []
 | |
| 
 | |
|     focal_points = []
 | |
|     for point in points:
 | |
|       x, y = point.ravel()
 | |
|       focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
 | |
| 
 | |
|     return focal_points
 | |
| 
 | |
| 
 | |
| def image_entropy_points(im, settings):
 | |
|     landscape = im.height < im.width
 | |
|     portrait = im.height > im.width
 | |
|     if landscape:
 | |
|       move_idx = [0, 2]
 | |
|       move_max = im.size[0]
 | |
|     elif portrait:
 | |
|       move_idx = [1, 3]
 | |
|       move_max = im.size[1]
 | |
|     else:
 | |
|       return []
 | |
| 
 | |
|     e_max = 0
 | |
|     crop_current = [0, 0, settings.crop_width, settings.crop_height]
 | |
|     crop_best = crop_current
 | |
|     while crop_current[move_idx[1]] < move_max:
 | |
|         crop = im.crop(tuple(crop_current))
 | |
|         e = image_entropy(crop)
 | |
| 
 | |
|         if (e > e_max):
 | |
|           e_max = e
 | |
|           crop_best = list(crop_current)
 | |
| 
 | |
|         crop_current[move_idx[0]] += 4
 | |
|         crop_current[move_idx[1]] += 4
 | |
| 
 | |
|     x_mid = int(crop_best[0] + settings.crop_width/2)
 | |
|     y_mid = int(crop_best[1] + settings.crop_height/2)
 | |
| 
 | |
|     return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
 | |
| 
 | |
| 
 | |
| def image_entropy(im):
 | |
|     # greyscale image entropy
 | |
|     # band = np.asarray(im.convert("L"))
 | |
|     band = np.asarray(im.convert("1"), dtype=np.uint8)
 | |
|     hist, _ = np.histogram(band, bins=range(0, 256))
 | |
|     hist = hist[hist > 0]
 | |
|     return -np.log2(hist / hist.sum()).sum()
 | |
| 
 | |
| 
 | |
| def centroid(pois):
 | |
|     x = [poi.x for poi in pois]
 | |
|     y = [poi.y for poi in pois]
 | |
|     return PointOfInterest(sum(x) / len(pois), sum(y) / len(pois))
 | |
| 
 | |
| 
 | |
| def poi_average(pois, settings):
 | |
|     weight = 0.0
 | |
|     x = 0.0
 | |
|     y = 0.0
 | |
|     for poi in pois:
 | |
|         weight += poi.weight
 | |
|         x += poi.x * poi.weight
 | |
|         y += poi.y * poi.weight
 | |
|     avg_x = round(weight and x / weight)
 | |
|     avg_y = round(weight and y / weight)
 | |
| 
 | |
|     return PointOfInterest(avg_x, avg_y)
 | |
| 
 | |
| 
 | |
| def is_landscape(w, h):
 | |
|     return w > h
 | |
| 
 | |
| 
 | |
| def is_portrait(w, h):
 | |
|     return h > w
 | |
| 
 | |
| 
 | |
| def is_square(w, h):
 | |
|     return w == h
 | |
| 
 | |
| 
 | |
| def download_and_cache_models(dirname):
 | |
|     download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
 | |
|     model_file_name = 'face_detection_yunet.onnx'
 | |
| 
 | |
|     if not os.path.exists(dirname):
 | |
|         os.makedirs(dirname)
 | |
| 
 | |
|     cache_file = os.path.join(dirname, model_file_name)
 | |
|     if not os.path.exists(cache_file):
 | |
|         print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
 | |
|         response = requests.get(download_url)
 | |
|         with open(cache_file, "wb") as f:
 | |
|             f.write(response.content)
 | |
| 
 | |
|     if os.path.exists(cache_file):
 | |
|         return cache_file
 | |
|     return None
 | |
| 
 | |
| 
 | |
| class PointOfInterest:
 | |
|     def __init__(self, x, y, weight=1.0, size=10):
 | |
|         self.x = x
 | |
|         self.y = y
 | |
|         self.weight = weight
 | |
|         self.size = size
 | |
| 
 | |
|     def bounding(self, size):
 | |
|         return [
 | |
|             self.x - size // 2,
 | |
|             self.y - size // 2,
 | |
|             self.x + size // 2,
 | |
|             self.y + size // 2
 | |
|         ]
 | |
| 
 | |
| 
 | |
| class Settings:
 | |
|     def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None):
 | |
|         self.crop_width = crop_width
 | |
|         self.crop_height = crop_height
 | |
|         self.corner_points_weight = corner_points_weight
 | |
|         self.entropy_points_weight = entropy_points_weight
 | |
|         self.face_points_weight = face_points_weight
 | |
|         self.annotate_image = annotate_image
 | |
|         self.destop_view_image = False
 | |
|         self.dnn_model_path = dnn_model_path
 | 
